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Résumé

Résumé
Cet these concerne la geometrie de la correspondence de Langlands p-adique. On donne
la formalisation des methodes de Emerton, qui permettrait d’établir la conjecture de
Fontaine-Mazur dans la cas general des groupes unitaire. Puis, on verifie que cette formal-
ism marche bien dans la cas de U(3) oú on utilise la construction de Breuil-Herzig pour
la correspondence p-adique.

De point de vue local, on commence l’étude de cohomologie modulo p et p-adiques de
tour de Lubin-Tate pour GL2(Qp). En particulier, on demontre que on peut retrouver la
correspondence de Langlands p-adique dans la cohomologie completée de tour de Lubin-
Tate.

Mots-clefs

program de Langlands, variétés de Shimura, espaces de Rapoport-Zink, représentations
galoisiennes

Abstract
This thesis concerns the geometry behind the p-adic local Langlands correspondence. We
give a formalism of methods of Emerton, which would permit to establish the Fontaine-
Mazur conjecture in the general case for unitary groups. Then, we verify that our formal-
ism works well in the case of U(3) where we use the construction of Breuil-Herzig as the
input for the p-adic correspondence.

From the local viewpoint, we start a study of the modulo p and p-adic cohomology
of the Lubin-Tate tower for GL2(Qp). In particular, we show that we can find the local
p-adic Langlands correspondence in the completed cohomology of the Lubin-Tate tower.

Keywords

Langlands program, Shimura varieties, Rapoport-Zink spaces, Galois representations
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Introduction

The p-adic Langlands program in recent years burst out with activity. The goal is to
construct a bijection between p-adic local Galois representations ρ : Gal(F̄ /F )→ GLn(E)
(where F and E are finite extensions of Qp) and certain admissible Banach representations
of GLn(F ) over E. Up to now, we have only a complete picture for GL2(Qp) (by the
work of Berger, Breuil, Colmez, Emerton, Kisin, Paskunas). In this case we have a
local construction of Colmez as well as Emerton’s proof that the p-adic local Langlands
correspondence appears in the completed cohomology of modular curves. Let us explain
this last result as it is the starting point of this thesis.

For any compact open subgroup K ⊂ GL2(Af ) let us define open modular curves as
complex varieties

Y (K) = GL2(Q)\(C\R)×GL2(Af )/K

Each Y (K) has a natural model over Q which we denote also by Y (K). Let us fix a
compact open subgroup Kp of GL2(Apf ). The p-adic completed cohomology of Emerton is
defined by

Ĥ i(Kp)E =

lim←−
s

lim−→
Kp

H i
et(Y (KpK

p),Z/psZ)

⊗Zp E

where Kp runs over compact open subgroups of GL2(Qp) and H i
et denotes the étale co-

homology groups. Hence there is a natural action of GQ = Gal(Q̄/Q) and GL2(Qp) on
Ĥ i(Kp)E .

Let Σ be a set of places which contains p and all the primes at whichKp is not hyperspecial.
We let TE = E[Tl, Sl]l 6∈Σ be the abstract Hecke algebra generated by standard Hecke
operators Tl and Sl. The Hecke algebra TE acts on Ĥ i(Kp)E . Let ρ : GQ → GL2(E) be a
continuous Galois representation. We say that ρ is pro-modular if the Hecke system λ of TE
associated to ρ is such that the λ-isotypic part Ĥ1(Kp)E [λ] of the completed cohomology
is non-zero. Let ρp = ρ|Gal(Q̄p/Qp) be the restriction of a pro-modular representation ρ and
let B(ρp) be the admissible Banach E-representation corresponding to ρp by the p-adic
local Langlands correspondence. One of the main results of Emerton says that we have a
GQ ×GL2(Qp)-injection

ρ⊗E B(ρp) ↪→ Ĥ1(Kp)E

Actually Emerton proves even more. Namely, he describes almost completely Ĥ1(Kp)E ,
but we shall need only the above weak local-global compatibility result.

One of the upshots of the above injection is the proof of the Fontaine-Mazur conjecture for
GL2 over Q. This conjecture states that if a continuous Galois representation ρ : GQ →
GL2(E) is unramified almost everywhere and ρp is de Rham, then ρ is modular (arises
as a Galois representation associated to a classical modular form). Using the above weak
local-global compatibility, Emerton proves that if ρ is pro-modular and ρp is de Rham,
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then ρ is in fact modular. The idea is that modularity is connected with certain locally
algebraic vectors being non-zero, and this statement follows from the inclusion above and
the fact that the locally algebraic vectors of B(ρp) are non-zero, when ρp is de Rham.
We remark, that for GL2 over Q Emerton is able to deduce from this apparently weak
statement of the Fontaine-Mazur conjecture, the full version by appealing to modularity
lifting theorems and Serre’s conjecture. In this work we shall deal only with deducing
that pro-modular Galois representations which are de Rham above places dividing p are
modular. We will refer to this statement as the pro-modular Fontaine-Mazur conjecture.
Our point of departure is the weak local-global compatibility of Emerton. In Chapter I
we give a general formalism which allows us to prove the pro-modular Fontaine-Mazur
conjecture for unitary groups U(n) compact at infinity assuming the existence of a certain
weak approximation of the p-adic local Langlands correspondence satisfying some natural
hypotheses. A natural question is to ask for examples. The construction of Breuil-Herzig is
the first succesful construction in the p-adic Langlands program, which goes beyond GL2.
They have associated to upper-triangular representations ρp : GQp → GLn(E) admissible
Banach E-representations Π(ρp)ord, which are built out of principal series. Conjecturally,
Π(ρp)ord should account for the ordinary part of the full p-adic local Langlands corre-
spondence Π(ρp) if it exists. We will show that their construction satisfies our formalism.
At the end of Chapter I we will prove the pro-modular Fontaine-Mazur conjecture in the
ordinary totally indecomposable setting for U(n) (see Corollary I.4.19):

Theorem .0.1. Let z ∈ XKp(E), where XKp is the eigenvariety of some tame level Kp

associated to U(n) and let ρ be the Galois representation associated to z. For each v | p
we assume that

1. ρv is ordinary, de Rham and regular;

2. the reduction ρ̄v is generic and totally indecomposable.

Then z is classical (i.e. it arises from a classical automorphic representation of U(n)).

In Chapter II (joint work with John Bergdall) we show that the construction of Breuil-
Herzig appears in the completed cohomology group of U(3). Let F/F+ be a CM extension
of number fields in which p is totally split and denote G = U(3) a definite unitary group
in three variables attached to F/F+. Let us fix a compact open subgroup Kp ⊂ G(Ap∞F ).
With this data in hand, we can define the completed cohomology group of Emerton

Ĥ0(Kp)E =

lim←−
s

lim−→
Kp

H0(G(Q)\G(A∞F )/KpK
p,Z/psZ)

⊗Zp E

where Kp runs over open compact subgroups of G(Qp). This space can be seen as a model
for p-adic automorphic representations on U(3).

If π is an automorphic representation on U(3) then it has an associated (in the usual
sense) global Galois representation ρ = ρπ : Gal(F̄ /F ) → GL3(E) (extending E if nec-
cessary; work of Blasius and Rogawski in this case). If π has tame level Kp then ρπ is
unramified away from a finite set depending on Kp.

For each place v | p of F+ we write v = ṽṽc and consider the local Galois representation
ρv := ρṽ : Gal(F ṽ/Fṽ) ' Gal(Qp/Qp) → GL3(E). If ρṽ is generic and ordinary (these
notions are defined in Chapter II) then the same is true for ρṽc and Π(ρṽ)ord only depends
on v | p in F+, where Π(ρṽ)ord is the representation of GL3(Fṽ) associated to ρṽ by [BH12].
Hence we will denote it by Π(ρv)ord. The following theorem (Theorem II.3.24) is our main
result. It is a weak form, in the case of U(3), of Conjecture 4.2.2 in [BH12].
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Theorem .0.2. Suppose that for all v | p, ρv is generic ordinary and totally indecompos-
able. Then there is a closed embedding

⊗̂
v|p

Π(ρv)ord ↪→ Ĥ0(Kp)E .

The techniques that we use in the proof of this theorem may be important in their
own right. Namely, we establish a connection between refinements of classical points on
the U(3)-eigenvariety and certain principal series. This allows us to conclude by using an
adjunction formula for the Jacquet functor of Emerton. We remark that these methods
should generalize to U(n), as well as to U(2, 1) for example, and this is the subject of our
current work in progress. This approach is a natural generalization of [BE10].

Searching for a way to generalize the p-adic local Langlands correspondence, lead us to
think about the geometric methods. The classical local Langlands correspondence was
proved only after the use of geometric methods by Harris-Taylor. They have used global
(Shimura varieties) as well as local objects (Rapoport-Zink spaces) in order to deduce the
correspondence. It is tempting to follow their approach also in the p-adic case. Even
though some of the methods are not anymore available (harmonic analysis), other appear
which are purely p-adic phenomenons. We have started this introduction by recalling
Emerton results which constitute the global geometric part of the p-adic Langlands pro-
gram. In Chapters III and IV we have investigated local geometric methods and we have
obtained partial results in this direction.

Chapter III focuses on the mod p cohomology of the Lubin-Tate tower. Our main results
are
(1) In the first cohomology group H1

LT,F̄p
of the Lubin-Tate tower for GL2(Qp) appears

the mod p local Langlands correspondence and the naive mod p Jacquet-Langlands cor-
respondence, meaning that there is an injection of representations

π ⊗ ρ̄ ↪→ H1
LT,F̄p

and σ⊗π⊗ρ̄ appears as a subquotient in H1
LT,F̄p

, where π is a supersingular representation
of GL2(Qp), ρ̄ is its associated local mod p Galois representation and σ is the naive mod
p Jacquet-Langlands correspondence (definition is given in Chapter III).
(2) The first cohomology group H1

LT,c,F̄p
with compact support of the Lubin-Tate tower

does not contain any supersingular representations. This suprising result shows that the
mod p situation is much different from its mod l analogue. It also permits us to show that
the mod p local Langlands correspondence appears in H1 of the ordinary locus. Again
this fact is different from the l-adic setting for supercuspidal representations.
To obtain those results, especially (1), we compare modular curves with their supersingular
locus, which contains multiple copies of the Lubin-Tate tower. We work at the rigid-
analytic level with Berkovich spaces.

In Chapter IV we study the p-adic completed cohomology of the Lubin-Tate tower. Our
main results are analogous to those mentioned above, though we take a slightly different
approach, by working with adic spaces. This allows us to work with modular curves of
infinite level, which are perfectoid spaces by the recent work of Scholze. This seems to be
a conceptually clearer approach. One of our main results is the following

Theorem .0.3. Let ρ : GQ = Gal(Q̄/Q) → GL2(E) be a pro-modular representation
(i.e. associated to some p-adic Hecke eigensystem on the Hecke algebra). Assume that
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ρ̄p = ρ̄|GQp
is absolutely irreducible. Then we have a GL2(Qp)×GQp-equivariant injection

B(ρp)⊗E ρp ↪→ H1(MLT,∞, E)

where B(ρp) is the p-adic Banach representation of GL2(Qp) associated to ρp by the p-adic
local Langlands correspondence and MLT,∞ is the Lubin-Tate space at infinity associated
to GL2(Qp).

Convention: In each chapter we refer to the results from this chapter by simply using the
arabic numbers. For example, in Chapter III, Corollary 8.4 will refer to Corollary III.8.4.



Chapter I

Weak local-global compatibility
and ordinary representations

I.1 Introduction

In [Eme11a], Emerton has shown that the completed cohomology of modular curves re-
alises the p-adic local Langlands correspondence and used this result to prove the Fontaine-
Mazur conjecture for GL2(Q). We start from the observation that Emerton’s methods can
be well formalized to work for other groups, at least if we assume certain hypotheses, for
example the existence of the p-adic Langlands correspondence. Fortunately, only a part
of properties of the conjectural p-adic local Langlands correspondence are needed for ap-
plications to the pro-modular Fontaine-Mazur conjecture. We list them under hypothesis
(H1) in the body of this chapter. After introducing this local definition, we move to the
global setting. We work on the unitary Shimura varieties of type U(n). After establishing
certain basic results on the completed cohomology of these objects, we introduce the no-
tion of an allowable set, which is a dense set of points on the eigenvariety, such that the
specialisation at its points of a certain universal deformation of ρ̄ lies in the completed
cohomology of our Shimura varieties. This gives a necessary global condition to link the
local hypothesis (H1) with the completed cohomology. Having to deal only with allowable
sets is easier, as we may hope that the description of the p-adic Langlands correspondence
for certain representations (regular and crystalline) will be explicit.

We remark that eventually we use two deformation arguments: one at the local level
and the other at the global level (the existence of allowable points). They are related
to two hypotheses ((H1) and (H2) respectively) on our global Galois representation ρ̄.
Assuming also a mild hypothesis (H3), we are able to prove the pro-modular Fontaine-
Mazur conjecture for U(n) in the following form (actually, we develop even more general
formalism):

Proposition I.1.1. Let F be a CM field and let E be a finite extension of Qp. Let
ρ : Gal(F̄ /F )→ GLn(E) be a continuous Galois representation such that

(1) ρ is pro-modular.

(2) ρv is de Rham and regular for every v|p.

(3) ρ̄ satisfies hypotheses (H1)-(H3).

Then ρ is a twist of a Galois representation associated to an automorphic form on U(n).
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The pro-modularity condition is explained in Section 3. It should not be very restrictive,
as it is believed that any representation ρ for which ρ̄ is modular, is pro-modular (this is
proved by Emerton for GL2 over Q).
As a corollary to this proposition, we obtain a version of the Fontaine-Mazur conjecture
on the respective eigenvariety.

Corollary I.1.2. Let ρ̄ : Gal(F̄ /F ) → GLn(k) be a continuous Galois representation
which satisfies hypotheses (H1)-(H3). Let X [ρ̄] be the ρ̄-part of the eigenvariety X associ-
ated to U(n) by the construction of Emerton from [Eme06c]. Let x ∈ X [ρ̄] be an E-point
such that its associated representation ρx : Gal(F̄ /F )→ GLn(E) is de Rham and regular
at every place of F above p. Then x is modular.

There is one principal example (besides GL2(Qp)) when our formalism is satisfied and
it was the motivation behind writing this chapter - namely, the recent construction of the
ordinary representations of Breuil-Herzig ([BH12]). We review this setting in the second
part of this chapter and then we prove unconditionally the pro-modular Fontaine-Mazur
conjecture for U(n) in the ordinary totally indecomposable setting at the end of this
chapter (see Theorem I.4.18 and its Corollary I.4.19). Interestingly, the proof is relatively
simple and we do not use in it the full construction of Breuil-Herzig.

I.2 Definitions and basic facts
Let L denote an imaginary quadratic field in which p splits and let c be the complex
conjugation. Choose a prime u above p. Let us denote by F+ a totally real field of degree
d. Set F = LF+. We will assume that p totally decomposes in F . Let D/F be a central
simple algebra of dimension n2 such that F is the centre of D, the opposite algebra Dop

is isomorphic to D ⊗L,c L and D is split at all primes above u. Choose an involution of
the second kind ∗ on D and assume that there exists a homomorphism h : C → DR for
which b 7→ h(i)−1b∗h(i) is a positive involution on DR.
Define the reductive group

G(R) = {(λ, g) ∈ R× ×Dop ⊗Q R | gg∗ = λ}.

We assume that G is a unitary group of signature (0, n) at all infinite places.
We choose a p-adic field E with ring of integers O and residue field k. These will be our
coefficient rings.
We will fix an integral model of G over OF+ [1/N ] (see for example 4.1 in [BH12] for
details). We consider 0-dimensional Shimura varieties SK = G(Q)\G(Af )/K for G, where
K is a compact open subgroup of G(Af ).
Let W be a finite-dimensional representation of G over E. By the construction described
in Chapter 2 of [Eme06c], we can associate to W a local system VW on SK .
Let us fix a finite set Σ of primes w of F , such that w|F+ splits and w does not divide pN .
We can now define the abstract Hecke algebra

TabsΣ = O[T (i)
w ]w/∈Σ

where T (i)
w are the Hecke operators for 1 ≤ i ≤ n. The operator T (i)

w acts on the Shimura
variety SK by a double coset GLn(OFw)

( 1n−j 0
0 $w1j

)
GLn(OFw), where $w is a uniformiser

of OFw .
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We define the completed cohomology of Emerton by

Ĥ0(Kp) = (lim←−
s

lim−→
Kp

H0(SKpKp ,O/$sO))⊗O E

where Kp ⊂ G(Qp) and Kp ⊂ G(Apf ) are open compact subgroups. We also define its
O-submodule

Ĥ0(Kp)O = lim←−
s

lim−→
Kp

H0(SKpKp ,O/$sO)

We will fix the tame level Kp for the rest of the chapter. Let KΣ =
∏
l /∈ΣG(Zl). We

assume that (Kp)l = G(Zl) at each l /∈ Σ.

We write T(KpK
p) for the image of TabsΣ in EndO(H0(SKpKp ,O)). Then we define

T = T(Kp) := lim←−
Kp

T(KpK
p)

where the limit runs over open compact subgroups Kp of G(Qp). We remark that T has
a finite number of maximal ideals and is a product of its localisation at those maximal
ideals. We refer the reader to p. 28 of [Sor12] for details. In particular, if m is a maximal
ideal of T, then Tm is a direct factor of T.

We define also
H0(Kp,VW ) = lim−→

Kp

H0(SKpKp ,VW )

where W is an irreducible algebraic representation of G and VW is the E-local system on
(SK)K associated to W .

We recall the definition of locally algebraic vectors from [Eme11b].

Definition I.2.1. Let G be the group of Qp-points in some connected linear algebraic
group G over Qp and let V be a representation of G over E. Let W be a finite-dimensional
algebraic representation W of G over E. A vector v in V is locally W -algebraic if there
exists an open subgroup H of G, a natural number n, and an H-equivariant homomorphism
Wn → V whose image contains the vector v. We write VW−la for the set of locally W -
algebraic vectors of V .

Emerton proved in Proposition 4.2.2 of [Eme11b] that VW−la is a G-invariant subspace
of V .

Definition I.2.2. A vector v in V is locally algebraic, if it is locally W -algebraic for some
finite-dimensional algebraic representation W of G. We denote the set of locally algebraic
vectors of V by Vl.alg.

It is a G-invariant subspace of V by Proposition 4.2.6 of [Eme11b]. We have the
following proposition

Proposition I.2.3. We have a G(AΣ0)-equivariant isomorphism

Ĥ0(Kp)l.alg '
⊕
W

H0(Kp,VW )⊗W∨

where the sum is taken over all isomorphism classes of irreducible algebraic representations
of G.
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Proof. This follows from the Emerton spectral sequence. See Corollary 2.2.18 of [Eme06c].

Let m be a maximal ideal of T which we fix and let ρ̄m : GF → GLn(k) be the continuous
Galois representation which is unramified outside Σ and whose characteristic polynomial
satisfies

charρ̄m(Frobw) =
n∑
i=0

(−1)n−i Nm(w)i(i−1)/2T (i)
w Xi mod m

for all places w which do not belong to Σ and which split when restricted to F+. This
is the Galois representation associated to m. We refer the reader to Proposition 3.4.2 in
[CHT08] for the construction. We remark that we can suppose that ρ̄m is valued in GLn(k)
after possibly extending E (which we allow).

We assume that the maximal ideal m of T is non-Eisenstein, that is ρ̄m is absolutely
irreducible. We let ρm be the universal automorphic deformation of ρ̄m over Tm (its
construction is standard and we do not recall it here; precise references may be found in
Section 4.3 of [CS13]). It is an n-dimensional Galois representation over Tm which satisfies

charρm(Frobw) =
n∑
i=0

(−1)n−i Nm(w)i(i−1)/2T (i)
w Xi

for all places w which do not belong to Σ and which split when restricted to F+.

I.3 General formalism
We now explain the general formalism for proving the pro-modular Fontaine-Mazur con-
jecture which we specialize at the end to the ordinary setting.

Let T′m be a local complete reduced O-algebra finite over Tm and let ρ′m : GF →
GLn(T′m) be the pushout of the universal representation ρm to T′m. In what follows, we
will always write p′ for an ideal of T′m and p for its inverse image in Tm. In particular, we
will write m′ for the maximal ideal of T′m.

We will make certain hypotheses (the last one depending on an ideal p′ ∈ SpecT′m):

• (H1) There exists an admissible representation Π(ρ′m,v) of GLn(Qp) over T′m associ-
ated to each local representation ρ′m,v for v|p. This representation is such that for
each prime ideal p′ of T′m which comes from Spm(T′m[1/p]) (where Spm is the max-
imal spectrum, i.e. the set of maximal ideals) for which ρ′m,v/p′[1/p] is regular and
de Rham at all places v dividing p, the locally algebraic vectors of Π(ρ′m,v)/p′[1/p]
are non-zero for all v|p. Moreover we assume that the k-representation πm,v :=
Π(ρ′m,v)/m′ is of finite length.

• (H2): There exists an allowable set of points for Π(ρ′m,v) (for each v|p), that is, there
exists a dense set of points C in Spec(T′m) which is contained in Spm(T′m[1/p]) and
such that for each p′ ∈ C we have

HomTm[G(Qp)](⊗̂v|pΠ(ρ′m,v)/p′, Ĥ0(Kp)) 6= 0

• (H3)[p′]: Every non-zero Tm[G(Qp)]-linear map

⊗̂v|pΠ(ρ′m,v)/p′ → Ĥ0(Kp)

is an embedding.
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Let us make some comments before showing how these hypotheses imply the pro-
modular Fontaine-Mazur conjecture.

The hypothesis (H1) gives an existence of a representation which shall be viewed as an
approximation of the p-adic local Langlands correspondence applied to ρ′m. In what follows
(H1) will be satisfied by using the construction of Breuil-Herzig of the ordinary part of
the p-adic local Langlands correspondence.

Regarding the hypothesis (H3)[p′] we will not say anything here. It is needed to deduce
that certain locally algebraic vectors are non-zero.

We are left with discussing (H2). Let us define

Πp = ⊗̂v|pΠ(ρ′m,v)

We define T′m-module
X = HomTm[G(Qp)](Πp, Ĥ

0(Kp)O)

of Tm[G(Qp)]-linear homomorphisms which are G(Qp)-equivariant and continuous, where
Πp is given the m-adic topology.

The hypothesis (H2) is equivalent to demanding the existence of an allowable set for
ρ̄ that is a dense subset C on SpecT′m, such that for all p′ ∈ C we have

X[p′] = HomTm[G(Qp)](Πp/p
′, Ĥ0(Kp)O,m) 6= 0

Let us prove a preliminary lemma:

Lemma I.3.1. HomO(X,O)⊗O E is a finitely generated T′m[1/p]-module.

Proof. By Proposition C.5 of [Eme11a] we have to show that X is cofinitely generated.
By Definition C.1, because Ĥ0(Kp)O,m is $-adically complete, separated and O-torsion
free, we are left to show that (X/$X)[m′] is finite-dimensional over k. But we have

(X/$X)[m′] ↪→ Homk[G(Qp)](Πp/m
′, Ĥ0(Kp)k,m)

and we show that Hom is finite-dimensional. Because Πp/m
′ = ⊗v|pπm,v and each πm,v is

of finite length, for each v we can choose a finite-dimensional k-subspace Wv of πm,v which
generates πm,v as a GLn(Qp)-representation. Let W = ⊗v|pWv. Since Wv is smooth and
finite-dimensional we can choose a compact open subgroup Kv fixing Wv point-wise. Let
Kp =

∏
v|pKv. By restriction we have

Homk[G(Qp)](Πp/m
′, Ĥ0(Kp)k,m) ↪→ Homk[Kp](W, Ĥ0(Kp)k,m)

Since Kp acts trivially on W we moreover have

Homk[Kp](W, Ĥ0(Kp)k,m) 'W∨ ⊗k H0(SKpKp , k)m

which is of finite dimention over k.

Lemma I.3.2. Assume (H2). Then X[p′] 6= 0 for all p′ ∈ SpecT′m.

Proof. By Lemma C.14 of [Eme11a], we have

(T′m/p′)⊗T′m HomO(X,O)⊗O E ' HomO(X[p′],O)⊗O E

and so it suffices to show that the elements on the right are non-zero for all p′ if and only
if they are non-zero for all p′ in C. Consider things in more generality. Let M be a finitely
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generated T′m[1/p]-module such that M/p′M 6= 0 for all p′ ∈ C. Because T′m[1/p]/p′ is a
field, it follows that M/p′M is a faithful T′m[1/p]/p′-module. If t ∈ T′m[1/p] acts by 0 on
M then it acts by 0 on M/p′M for all p′, and as M/p′M 6= 0 if p′ ∈ C, we have t ∈ p′

for all p′ ∈ C, that is t ∈ ∩p′∈Cp′ = 0. So T′m[1/p] acts faithfully on M . Now, let p′ be
any maximal ideal of T′m[1/p] and suppose that M/p′M = 0, that is M = p′M . As M
is finitely generated T′m[1/p]-module, Nakayama’s lemma gives us a non-zero element t of
T′m[1/p] such that tM = 0, which is impossible as we have shown above. We deduce that
M/p′M 6= 0 for all p′. Applying this reasoning toM = HomO(X,O)⊗OE which is finitely
generated by Lemma I.3.1, we conclude.

Definition I.3.3. We say that a representation ρ : Gal(F̄ /F )→ GLn(E) is pro-modular
with respect to T′m if there exists a prime ideal p′ of T′m such that ρ ' ρm/p[1/p] and
Ĥ0(Kp)[p] 6= 0, where p is the inverse image of p′ in Tm.

One natural source of pro-modular representations are representations attached to
points on the eigenvariety for G. We shall review this notion later on.

We say that ρ is modular if it is the Galois representation associated to some auto-
morphic representation of G of tame level Kp. This is equivalent to Ĥ0(Kp)l.alg[p] 6= 0 by
Proposition I.2.3. Our three hypotheses imply the pro-modular Fontaine-Mazur conjecture
in the following form.

Theorem I.3.4. Let ρ : Gal(F̄ /F ) → GLn(E) be a pro-modular Galois representation
with respect to T′m with the associated prime ideal p′ of T′m. Assume that ρ is de Rham
and regular at all places dividing p. Assume also that hypotheses (H1),(H2) and (H3)[p’]
hold. Then ρ is modular.

Proof. As ρv is de Rham and regular for every v|p, by (H1) we have that Π(ρv)l.alg 6= 0
for every v|p. By Lemma I.3.2 and the hypothesis (H3)[p′] we conclude that also

Ĥ0(Kp)l.alg[p] 6= 0

which is what we wanted.

In the rest of this chapter we will explain the ordinary setting.

I.4 Ordinary case
In this section, we show that the ordinary part of Breuil-Herzig ([BH12]) fulfills the for-
malism presented in the previous section.

I.4.1 Preliminaries on reductive groups

We recall certain results on reductive groups used in [BH12]. Let G be a split connected re-
ductive Zp-group with a Borel subgroupB and a torus T ⊂ B. We let (X(T ), R,X∨(T ), R∨)
be the root datum of G, where R ⊂ X(T ) (respectively R∨ ⊂ X∨(T )) is the set of roots
(resp. coroots). For each α ∈ R, let sα be the reflection on X(T ) associated to α. Let W
be the Weyl group, the subgroup of automorphisms of X(T ) generated by sα for α ∈ R.

We fix a subset of simple roots S ⊂ R and we let R+ ⊂ R be the set of positive roots
(roots in ⊕α∈SZ≥0α). Let Gder be the derived group of G and let Ĝ be the dual group
scheme of G (which we get by taking the dual root datum). We have also dual groups B̂
and T̂ .
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To α ∈ R one can associate a root subgroup Uα ⊂ G. We have α ∈ R+ if and only if
Uα ⊂ B. We let gα be the Lie algebra of Uα. We call a subset C ⊂ R closed if for each
α ∈ C, β ∈ C such that α + β ∈ R, we have α + β ∈ C. If C ⊂ R+ is a closed subset, we
let UC ⊂ U be the Zariski closed subgroup of B generated by the root subgroups Uα for
α ∈ C. We let BC = TUC be the Zariski closed subgroup of B determined by C.

Let us spell out all the assumptions that we put on G and its dual group Ĝ. We
suppose throughout this chapter that both G and Ĝ have connected centers. Moreover
we suppose that Gder is simply connected (some of these conditions are equivalent, see
Proposition 2.1.1 in [BH12]). This condition implies that there exist fundamental weights
λα for α ∈ S. They satisfy for any β ∈ S

〈
λα, β

∨〉 =
{

1 if α = β
0 if α 6= β

We define as in Section 3.1 of [BH12] a twisting element θ for G by setting θ =
∑
α∈S λα.

For any α ∈ S we have 〈θ, α∨〉 = 1.

If C ⊂ R is a closed subset, write GC for the Zariski closed subgroup scheme of G
generated by T , Uα and U−α for α ∈ C. For C = {α} we write simply Gα for GC . A subset
J ⊂ S of pairwise orthogonal roots is closed (see the proof of Lemma 2.3.7 in [BH12]) and
hence we can define GJ as above.

Lemma I.4.1 (Lemma 3.1.4, [BH12]). Let J ⊂ S be a subset of pairwise orthogonal roots.
Then there is a subtorus T ′J ⊂ T which is central in GJ such that

GJ ' T ′J ×GLJ2

We use this lemma in the construction of Π(ρ)ord which we define as a sum over certain
induced representations of GJ(Qp). We construct representations of GJ(Qp) by using the
p-adic local Langlands correspondence for GL2(Qp).

I.4.2 Ordinary part of the p-adic local Langlands correspondence

Let E be a finite extension of Qp with ring of integers O and let k be its residue field. We
fix also a uniformiser $. Let A be a complete local Noetherian O-algebra with residue
field k.

We have

T (Qp) = HomSpec(Qp)(Spec(Qp),Spec(Qp[X(T )])) = HomZ(X(T ),Q×p ) =

= HomZ(X(T ),Z)⊗Z Q×p = X(T̂ )⊗Z Q×p
To a continuous character

χ̂ : Gal(Q̄p/Qp) � Gal(Q̄p/Qp)ab → T̂ (A)

we can associate a continuous character χ : T (Qp) → A× by taking the composite of the
maps

T (Qp) ' X(T̂ )⊗Z Q×p ↪→ X(T̂ )⊗Z Gal(Q̄p/Qp)ab → X(T̂ )⊗Z T̂ (A)→ A×

where the first injection comes from the local class field theory.
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We define the p-adic cyclotomic character ε : GQp → A× by composing the standard
p-adic cyclotomic character which takes values in O× with the inclusion O× ↪→ A×. By
the local class field theory we can also consider it as a character of Q×p which we tacitly
do in what follows.

Let us consider a continuous homomorphism

ρ : Gal(Q̄p/Qp)→ Ĝ(A)

Definition I.4.2. We say that ρ is triangular when it takes values in our fixed Borel
B̂(A) of Ĝ(A).

We let Cρ ⊂ R+∨ be the smallest closed subset such that B̂Cρ(A) contains all the ρ(g)
for g ∈ Gal(Q̄p/Qp) (compare with Lemma 2.3.1 of [BH12]). Thus ρ factorises via B̂Cρ(A)

ρ : Gal(Q̄p/Qp)→ B̂Cρ(A) ⊂ B̂(A) ⊂ Ĝ(A)

We associate a character χ̂ρ to ρ by composing ρ with the natural surjection

χ̂ρ : Gal(Q̄p/Qp)→ B̂Cρ(A) � T̂ (A)

We attach to χ̂ρ a continuous character χρ : T (Qp) → A× by the local class field theory
as above.

Definition I.4.3. We say that a triangular ρ is generic if α∨ ◦ χ̂ρ /∈ {1, ε, ε−1} for all
α ∈ R+ (or equivalently all α ∈ R). The same definition applies to the reduction ρ̄ of ρ.

In what follows we will consider only triangular representations ρ. We assume that ρ̄
is generic.

We now construct several representations of G(Qp) over A attached to ρ. Let I ⊂
S∨ be a subset of pairwise orthogonal roots. We shall firstly construct an admissible
continuous representation Π̃(ρ)I of GI∨(Qp) over A. We imitate the proof of Proposition
3.3.3 in [BH12], though we present a simplified construction, because we do not need to
show unicity of Π̃(ρ)I . Only later on and under additional assumptions we will show
that we retrieve the construction of Breuil and Herzig over fields. Then we obtain a
representation Π(ρ)ord of G(Qp) over A, which generalizes the construction of Breuil and
Herzig over fields, and which we define as a direct limit of Π(ρ)I over different I (where
Π(ρ)I is simply Π̃(ρ)I induced to G(Qp)). In particular, we shall consider a representation
Π(ρ)∅ = (IndG(Qp)

B(Qp) χρ · (ε
−1 ◦θ))C0 which we use for the proof of the pro-modular Fontaine-

Mazur conjecture. All these representations are functorial in A and hence behave well
with respect to reduction modulo prime ideals.

If β ∈ I∨ and χβ : Tβ(Qp)→ A× is a continuous character, we define

Πβ(χβ) =
(

IndGL2(Qp)
( ∗ 0
∗ ∗ )

χβ · (ε−1 ◦ θ)|Tβ(Qp)

)C0

This is a representation of GL2(Qp) which we use as a building block. We let ρβ :
Gal(Q̄p/Qp)→ GL2,β∨(A) be the representation which we get by composing ρ : Gal(Q̄p/Qp)→
B̂(A) with B̂(A)→ B̂β(A)→ GL2,β∨(A). We define Eβ as the representation attached to
the 2-dimensional Galois representation ρβ by the p-adic local Langlands correspondence
for GL2(Qp). In order to have a functorial construction we fix a quasi-inverse MF−1 to
the Colmez functor MF for GL2(Qp) (we use the notation of Emerton from [Eme11a]).
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For any β it sends a lifting of ρ̄β to a lifting of π̄β with a central character (where π̄β
is the smooth representation over k corresponding to ρ̄β by the mod p local Langlands
correspondence). Then we define

Eβ = MF−1(ρβ)

We remark that over k this is an extension of Πβ(sβ(χρ|Tβ(Qp))) by Πβ(χρ|Tβ(Qp)) because
ρβ is lower-triangular with the appropiate character on the diagonal (see Proposition 3.4.2
in [Eme11a]).

Let χ′ρ,I∨ = χρ|T ′
I∨ (Qp). We define an admissible continuous representation of T ′I∨(Qp)×

GL2(Qp)I
∨

Π̃(ρ)I = χ′ρ,I∨ · (ε−1 ◦ θ|T ′
I∨ (Qp))⊗A (⊗̂β∈I∨Eβ)

This is exactly the representation we look for.

We set
Π(ρ)I =

(
IndG(Qp)

B−(Qp)GI∨ (Qp) Π̃(ρ)I
)C0

where we view Π̃(ρ)I as a continuous representation of B−(Qp)GI∨(Qp) by inflation. By
the proposition above and by Theorem 3.1.1 in [BH12] (which holds in our setting verba-
tim), the representation Π(ρ)I of G(Qp) is admissible and continuous.

We now use an argument similar to the one of Breuil-Herzig appearing before Lemma
3.3.5 in [BH12] to construct a direct limit. Following the proof of Proposition 3.4.2 of
[Eme11a] we have natural injections of Πβ(χρ|Tβ(Qp)) into Eβ. Indeed, Proposition 3.2.4
of [Eme11a] gives us a natural embedding χρ|Tβ(Qp) ↪→ Ord(Eβ), where we have denoted
by Ord the ordinary part functor of Emerton. By adjointness property of Ord this gives
us a GL2(Qp)-equivariant injection Πβ(χρ|Tβ(Qp)) ↪→ Eβ. We remark that those injections
will be functorial because of Proposition 3.2.4 of [Eme11a] and because we have fixed a
quasi-inverse MF−1.

By Theorem 4.4.6 and Corollary 4.3.5 of [Eme10], we have for I ′ ⊂ I

HomG(Qp)(Π(ρ)I′ ,Π(ρ)I) ' HomGI∨ (Qp)

(
(IndGI∨ (Qp)

(B−(Qp)∩GI∨ (Qp))G
I
′∨ (Qp) Π̃(ρ)I′)C

0
, Π̃(ρ)I

)
Observe that our injections

Πβ(χρ|Tβ(Qp)) ↪→ Eβ
invoked above induce an injection

IndGI∨ (Qp)
(B−(Qp)∩GI∨ (Qp))G

I
′∨ (Qp)(Π̃(ρ)I′)C

0
↪→ Π̃(ρ)I

and hence also a G(Qp)-equivariant injection

Π(ρ)I′ ↪→ Π(ρ)I

This actually gives a compatible system of injections, by which we mean that for any
I ′′ ⊂ I ′ ⊂ I, the corresponding diagram of injections is commutative. We then define an
admissible continuous representation of G(Qp) over A by

Π(ρ)ord = lim−→
I

Π(ρ)I

where I runs over subsets of S∨ of pairwise orthogonal roots.
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I.4.3 Compatibility with the construction of Breuil-Herzig

We study in this section how Π(ρ)ord behaves with respect to reduction modulo prime
ideals in A. Recall that G and its dual are split, hence we can canonically identify R∨(A)
and R∨(A/p) for any prime ideal p of A.

Lemma I.4.4. Let A → A′ be a morphism of complete local O-algebras and let ρ be
triangular over A with ρ̄ generic. Then

Π(ρ⊗A A′)I ' Π(ρ)I ⊗A A′

for any subset I ⊂ S∨ of pairwise orthogonal roots and

Π(ρ⊗A A′)ord ' Π(ρ)ord ⊗A A′

Proof. Observe that ρ ⊗A A′ is triangular because ρ is. By the definition of Π(ρ)I it is
enough to check, that the construction of Π̃(ρ)I we have given above is compatible with
the base change A → A′. This follows from the fact that the p-adic local Langlands
correspondence for GL2(Qp) is compatible with the base change A→ A′.

To put more content into this lemma let us specialize to the totally indecomposable
case.

Definition I.4.5. We say that ρ is totally indecomposable if Cρ = R+∨ is minimal
among all conjugates of ρ by B (equivalently, Cbρb−1 = R+∨ for all b ∈ B).

We prove now that for GLn we retrieve the construction of Breuil-Herzig after reducing
modulo p. Before continuing, we shall give another characterisation of totally indecom-
posable representations valable for G = GLn.

Lemma I.4.6. Let ρ : Gal(Q̄p/Qp)→ GLn(A) be a triangular representation and A be a
field. The following conditions are equivalent:

1. All semi-simple subquotients of ρ are simple (equivalently, the graded pieces of the
filtration by the socle are irreducible).

2. B is the unique Borel that contains the image of ρ (equivalently, the image of ρ fixes
a unique Borel B (flag)). Here B is the Borel we have fixed before in the definition
of being triangular.

3. ρ is totally indecomposable.

Proof. (1. ⇔ 2.) If there exists socj+1 / socj which is not irreducible then we can construct
two distinct flags which are stable by the image of ρ. On the other hand, if there exists
two distinct flags fixed by the image of ρ, say

V1 ⊂ V2 ⊂ ... ⊂ Vn

and
V ′1 ⊂ V ′2 ⊂ ... ⊂ V ′n

and let j be the smallest index such that Vj 6= V ′j . Then (Vj + V ′j )/Vj−1 is of dimension 2
and semi-simple, hence ρ is not totally indecomposable.
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(2. ⇔ 3.) Suppose that ρ stabilizes another Borel B′ (apart from B). Let b ∈ B be an
element which conjugates B′ into a Borel containing the maximal torus T . This Borel
bB′b−1 is of the form w(B) for some w in the Weyl group. Hence we see that Cbρb−1 is
contained in the intersection of R+∨ and w(R+∨), and in particular is different from R+∨.

If Cρ is different from R+∨, then there exists a positive simple root α which does not
belong to Cρ. It follows that sα(Cρ) is contained in R+∨ and hence the image of ρ is
contained in sα(B).

Lemma I.4.7. Let ρ : Gal(Q̄p/Qp) → GLn(O) be a triangular representation such that
ρ̄ is triangular, generic and totally indecomposable. Then ρE = ρ ⊗O E is also totally
indecomposable and generic.

Proof. The statement about genericity of ρE is clear. Let us prove that it is totally
indecomposable. Let us denote by χ̄j characters appearing on the diagonal of ρ̄ which we
have supposed to be pairwise distinct hence linearly independent. Let B be a Borel in
GLn(E) containing the image of ρ. It corresponds to a flag

V1 ⊂ V2 ⊂ ... ⊂ Vn = En

By intersection with On we obtain a flag

ω1 ⊂ ω2 ⊂ ... ⊂ ωn = On

of On stable by the image of ρ which reduces to the standard flag modulo m by the
hypothesis that ρ̄ is totally indecomposable. In particular, we see that G acts on Vi/Vi−1
by a character χi with values in O× which lifts the character χ̄i. By genericity of ρ̄, the
characters χi are mutually distinct and each appears in the semi-simplification of ρ with
multiplicity 1.

Suppose now that we have another Borel B′ different from B and stable by the image
of ρ with the associated flag

V ′1 ⊂ V ′2 ⊂ ... ⊂ V ′n
Let i be the smallest index i such that V ′i 6= Vi. Then G acts on the 2-dimensional
subquotient (Vi+V ′i )/Vi−1 by the character χi, which contradicts the fact that χi appears
with multiplicity 1. Hence B′ = B and we see that ρ is totally indecomposable by Lemma
I.4.6.

Proposition I.4.8. Suppose that ρ̄ is generic, triangular and totally indecomposable and
ρ is triangular. Then for any morphism A→ E′ (where E′ is a finite extension of E), the
E′-Banach representation Π(ρ)ord⊗AE′ is the representation Π(ρ⊗AE′)ord of Breuil and
Herzig.

Proof. By Lemma I.4.4 we can suppose that A = OE′ . Observe that ρE′ = ρ ⊗OE′ E
′ is

generic and totally indecomposable by Lemma I.4.7. To finish the proof we have to show
that ρE′ is a good conjugate of itself (Definition 3.2.4 in [BH12]). This follows from (3) of
Lemma I.4.6 and we conclude by Lemma 3.3.5 of [BH12].

I.4.4 Universal ordinary modular representation

In this subsection we will apply the formalism developed above to a particular example.
We consider triangular deformations of modular representations and our goal is to define
Π(ρm,w)ord, where ρm,w is a certain universal modular Galois representation at a place w|p.
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We take up the setting of Section I.2. For each place w|p of F+ we choose a place w̃
of F , so as to get an identification

G(Qp) '
∏
w|p

GLn(Fw̃) = GLn(Qp)f

where f = [F+ : Q]. We denote by B the upper triangular Borel subgroup and we have
B ' Bn(Qp)f .

We will now define a certain quotient T(Kp)ord of T(Kp). There are two equivalent
approaches for this.

Firstly, we may follow Geraghty who introduced in 2.4 [Ger10] a certain direct factor
T(KpKp(n))ord of T(KpKp(n)) where Kp(n) denotes the group of matrices in GLn(Zp)f
that reduce to a unipotent upper-triangular matrix mod pn. More precisely, in loc. cit is
defined the algebra TT,ord

λ (U(ln,n),O). There, λ is a dominant weight for G (but we take
λ = 0 in this case), U(ln,n) is our KpKp(n) (our p is denoted by l), T is our Σ. Beware
that Geraghty’s algebra contains diamond operators at places above p (his l), in contrast
with ours. So our T(KpKp(n))ord is the image of T(Kp) in Geraghty’s TT,ord

0 (U(ln,n),O).
When n varies, these constructions are compatible and we may take the projective limit
TT,ord

0 (U(l∞),O). We get a quotient T(Kp)ord as the image of the natural map T(Kp)→
TT,ord

0 (U(l∞),O) in Geraghty’s notation on p.14 of loc. cit.

Alternatively, we may use Emerton’s ordinary part functor and define

T(Kp)ord := image of T(Kp) in EndO(OrdB(Ĥ0(Kp)))

Note that OrdB(Ĥ0(Kp)) is a continuous representation of T (Qp) over T(Kp) and in
particular is a T(Kp)[[T (Zp)]]-module. Then Geraghty’s algebra can be identified with
the image of T(Kp)[[T (Zp)]] in EndO(OrdB(Ĥ0(Kp))) (compare with 5.6 of [Eme11a]).

Lemma I.4.9. T(Kp)ord is a direct factor of T(Kp).

Proof. Denote by T(KpN(Zp)) the image of T(Kp) in EndO(Ĥ0(Kp)N(Zp)). Note that in
Geraghty’s notation, T(KpN(Zp)) is the image of T(Kp) in TT (U(l∞),O). By definition
T(Kp)ord is thus a direct factor of T(KpN(Zp)). Therefore, we need to show that T(Kp) =
T (KpN(Zp)). This amounts to prove that T(Kp) acts faithfully on Ĥ0(Kp)N(Zp). Since
T(Kp) is reduced andO-torsion free, it suffices to prove that Ĥ0(Kp)N(Zp)

E [p] is non-zero for
a dense set of primes p in Spec(T(Kp)[1/p]). The set Palg of prime ideals p in T(Kp)E such
that Ĥ0(Kp)E [p]l.alg is non-zero is known to be dense (Corollary 4 in [Sor12]). Now, for
any irreducible locally algebraic representation π⊗W of G(Qp), we have that (π⊗W )N(Zp)

is non-zero. Therefore, for all p ∈ Palg we have Ĥ0(Kp)N(Zp)
E [p] 6= 0 and we conclude.

Let now m be a maximal ideal of T(Kp) as in Section I.2. We say that m is ordinary
if it comes from a maximal ideal of T(Kp)ord. By the lemma above, the quotient map
T(Kp)m → T(Kp)ord

m is an isomorphism.

Let us fix an ordinary non-Eisenstein maximal ideal m of T(Kp). Recall that we have
defined ρ̄m and ρm in Section I.2. For any prime ideal p in T(Kp)m coming from the
maximal spectrum Spm(T(Kp)m[1/p]), we will write

ρp := ρm ⊗T(Kp)m T(Kp)m/p[1/p]

which is a continuous Galois representation over a finite extension of Qp. We will need
the following result of Geraghty:
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Proposition I.4.10. Consider the set P crisautom of maximal ideals in T(Kp)m[1/p] such that
H0(KpKp(0),VW )[p] is non-zero for some irreducible algebraic representation W of G.
Then:

• This set is Zariski dense in Spec(T(Kp)m[1/p]).

• For any p in P crisautom, the representation ρp is triangularisable (and crystalline) at
each place dividing p.

Proof. The point 2. follows from Corollary 2.7.8 of [Ger10]. The point 1. is the density
of cristalline points which is proved in Corollary 4 of [Sor12], or can be deduced from the
density result of Hida used by Geraghty in the proof of Corollary 3.1.4 in [Ger10].

As a consequence of this proposition, the residual representation ρ̄m,w is triangularisable
for each w|p.

We now assume further that ρ̄m,w is totally indecomposable and generic for each w|p.
Note that generic was only defined for triangular representations. However the defini-
tion extends unambiguously to triangularisable representations, provided they are totally
indecomposable, because such representations factor through a unique Borel subgroup.

Our goal is to define Π(ρm,w)ord where ρm,w is the restriction of ρm to the decomposition
group GFw = Gal(F̄w/Fw) for any place w|p of F . In order to do so, we need to prove
that ρm,w is triangularisable. We basically do so, but not over Tm but rather over a bigger
O-algebra T′m. This is sufficient for our applications.

Following Geraghty (Section 3.1 of [Ger10]) we introduce a subfunctor G of SpecTm×F
defined on A-points as the set of O-homomorphisms Tm → A and filtrations Fil ∈ F(A)
(F is the flag variety) preserved by the induced representation ρA,w. In fact, Geraghty
defined this functor over a universal ring R, but we shall need it only over the Hecke
algebra.

This functor is representable by a closed subscheme G of SpecTm × F (Lemma 3.1.2
in [Ger10]). We consider the resulting morphism f : G → SpecTm.

Proposition I.4.11. The morphism f : G → SpecTm is proper with geometric fibres of
cardinal one.

Proof. The properness of f follows from that of the flag variety (cf. the proof of Lemma
3.1.3 in [Ger10]). Let us now prove that each geometric fibre is of cardinal one. Let us
denote by χ̄1,w, χ̄2,w, ..., χ̄n,w characters of GFw appearing on the diagonal of ρ̄m,w. Firstly,
we remark that geometric fibres are non-empty. Indeed, f is dominant by Proposition
I.4.10, hence surjective since it is proper. On the other hand, there is at most one filtration
Fil over each geometric point, because ρ̄m,w is generic and totally indecomposable hence
each j-th graded piece grj = Filj /Filj−1 has to be a lifting of χ̄j,w (see proofs of Lemma
I.4.6 and Lemma I.4.7). This allows us to conclude.

By Proposition above and Zariski Main Theorem we conclude that f is finite and hence
G = SpecT′m,w for some O-algebra T′m,w finite over Tm.

Corollary I.4.12. The morphism f : SpecT′m,w → SpecTm is a homeomorphism which
induces an isomorphism of residual fields at each prime p′ ∈ SpecT′m,w with perfect residual
field.

Proof. It follows from the fact that geometric fibres of f are of cardinal one.
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We define T′m to be the tensor product over Tm of T′m,w for all w|p. This is still an
O-algebra finite over Tm with SpecT′m homeomorphic to SpecTm.

Consider the base-change of ρm to T′m, that is ρ′m : GF → GLn(T′m). By what we have
said above, ρ′m,w can be conjugated to a triangular representation ρ′′m,w for each w|p, which
is also generic and totally indecomposable at each w|p, because ρ̄m,w is by our assumption.
By Corollary above, for each prime ideal p associated to an automorphic representation π
on G(A), there exists a unique p′ in T′m such that ρ′m/p′ρ′m[1/p] ' ρm/pρm[1/p].

The above discussion leads us to the following definition

Π(ρm,w)ord := Π(ρ′′m,w)ord

and similarly
Π(ρm,w)I := Π(ρ′′m,w)I

for any I, in particular for I = ∅ which we shall use below. These are representations over
T′m. To conclude using our precedent results that the reduction modulo prime ideals of
Π(ρm,w)ord is well-behaved and compatible with the construction of Breuil-Herzig we need
the following fact.

Lemma I.4.13. For each prime ideal p of T′m which comes from a maximal ideal of
T′m[1/p], the representation Π(ρ′′m,w)ord/p[1/p] does not depend on the chosen triangulation
ρ′′m,w of ρ′m,w (where by triangulation of ρ′m,w we mean a triangular representation which
can be conjugated to ρ′m,w).

Proof. By Proposition I.4.8 we deal with the construction of Breuil-Herzig and hence we
can use facts from [BH12]. We have to prove that for any triangulation ρ′′m,w the reduction
ρ′′m,w/p is a good conjugate of ρm,w/p (Definition 3.2.4 in [BH12]). This would give our
claim by Lemma 3.3.5 of [BH12]. By our assumption that ρ̄m,w is generic triangular and
totally indecomposable, any triangular lift ρ of ρ̄m,w is totally indecomposable and generic
by Lemma I.4.7. Then we conclude by (3) of Lemma I.4.6 that each triangulation of
ρ′m,w/p (in particular ρ′′m,w/p) is a good conjugate of ρ′m,w/p.

We summarize our efforts so far in the following theorem.

Theorem I.4.14. Let m be an ordinary non-Eisenstein ideal of T such that ρ̄m,w is totally
indecomposable and generic for each w|p in F . Then we have for any prime ideal p′ of T′m
(with the inverse image p in Tm) which comes from a maximal ideal of T′m[1/p]:

Π(ρ′m,w)ord/p′Π(ρ′m,w)ord[1/p] ' Π(ρm,w/pρm,w[1/p])ord

Similar compatibilities with reduction modulo prime ideals hold for Π(ρm,w)I .

I.4.5 On the pro-modular Fontaine-Mazur conjecture

We come back to our general formalism which we will apply to Π(ρm,w)∅. We assume that
m is a non-Eisenstein ordinary ideal of T such that ρ̄m,w is triangular, generic and totally
indecomposable for each w|p. We take T′m to be T′m from preceding sections. We start
with two lemmas:

Lemma I.4.15. Let ψ1, ψ2 : Gal(Qp/Qp) → E be two de Rham characters such that
ψ1ψ

−1
2 /∈ {1, ε, ε−1} and let 0 → ψ1 → V → ψ2 → 0 be the non-split extension (there is a

unique one; see below). Suppose that V is de Rham. Then HT(ψ1) < HT(ψ2) (normalizing
HT(ε) = −1).
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Proof. The fact that there is a unique extension of ψ1 by ψ2 follows from the fact that
H1 = H1(Gal(Qp/Qp), ψ1ψ

−1
2 ) is of dimension 1 because ψ1ψ

−1
2 is generic. Observe that

V ∈ H1. One can define the Selmer group H1
g = H1

g (Gal(Qp/Qp), ψ1ψ
−1
2 ) which measures

whether V is de Rham (we refer the reader to Chapter II of [Ber13]; Definition is given
before Proposition 2.17). By Corollary 2.18 of [Ber13] we see that V ∈ H1

g . Hence H1
g is of

dimension one. But Proposition 2.19 of [Ber13] gives us a formula for the dimension of H1
g ,

by which we infer in our case that dimH1
g = 1 is equal to the number of negative Hodge-

Tate numbers (compare with the discussion after Proposition 2.19 in [Ber13]). Hence
HT(ψ1) < HT(ψ2).

Recall that we have defined the character θ in Section I.4.1. For GLn this character is
simply diag(z1, ..., zn) 7→

∏
i z

1−i
i .

Lemma I.4.16. Let ρ : Gal(Qp/Qp) → GLn(E) be a de Rham, triangular, totally in-
decomposable, generic Galois representation. Then the character χρ · (ε−1 ◦ θ) is locally
algebraic dominant.

Proof. Triangularity permits us to define χρ. It is clear that the character is locally
algebraic because ρ is de Rham. We conclude that χρ · (ε−1 ◦ θ) is dominant by applying
the lemma above to each pair of consecutive characters on the diagonal of ρ (which we
can do because ρ is totally indecomposable and generic).

We can now check that for representations Π(ρm,w)∅ hypothesis (H1) holds:
(H1): We have to check that if p is a prime ideal of T′m corresponding to the Galois
representation ρp which is de Rham and regular at all places w|p, then locally algebraic
vectors in Π(ρm,w)∅/p[1/p] = Π(ρp,w)∅[1/p] are non-zero. Indeed, the locally algebraic
vectors in Π(ρp,w)∅[1/p] are non-zero because it is the representation induced from the
locally algebraic dominant character χ = χρ⊗(ε−1◦θ) (by Lemma I.4.16); to see it we write
χ = χsmδW for this character, where χsm is smooth and δW is algebraic corresponding to an
irreducible algebraic representation W of G(Qp). We have W = (IndG(Qp)

B−(Qp) δW )alg. Then

the universal completion of the locally algebraic representation (IndG(Qp)
B−(Qp) χsm)sm ⊗W

is equal to (IndG(Qp)
B−(Qp) χ)C0 = Π(ρp,w)∅[1/p] because χ is unitary (we inject the locally

algebraic induction into the continuous induction by sending fsm⊗falg to fsm ·falg, where
fsm,falg are functions on smooth, respectively algebraic part). In particular, the set of
locally algebraic vectors in Π(ρp,w)∅[1/p] is non-empty. The fact that Π(ρm,w)∅/m′ is of
finite length is clear from the definition.

For p ∈ P crisautom as in Proposition I.4.10, we know that each ρp,w is crystalline triangu-
larisable. Our hypothesis on ρ̄m,w implies that ρp,w is also totally indecomposable (Lemma
I.4.7) and generic. So we may unambigously associate to it a character χρp,w of Tn(Qp).

Let us recall a classical local-global compatibility result.

Lemma I.4.17. Fix p ∈ P crisautom. Let W be the irreducible algebraic representation of
G(Qp) such that H0(Kp,VW )[p] 6= 0. Let π be an automorphic representation such that
πK

p

f ⊂ H0(Kp,VW )[p]. Then

W∨ = ⊗w|p(IndGLn(Qp))
B−(Qp) (χρπ ,w · (ε−1 ◦ θ))alg)alg

πp = ⊗w|p(IndGLn(Qp)
B−(Qp) (χρπ ,w · (ε−1 ◦ θ))sm)sm

where we have denoted by (.)sm (respectively, (.)alg) the smooth (resp. algebraic) part of
the character.
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Proof. The first isomorphism follows from Corollary 2.7.8(i) of [Ger10] with the following
dictionary:

• our W is Geraghty’s Mλ, therefore W∨ = IndGLn
B− (w0λ)−1

• his λ = (λτ )τ :F+↪→E = (λw)w|p since p was assumed to be totally split in F .

• for each w|p, loc. cit. tells us that (χρπ,w)alg = (w0λw)−1 · θ

The second isomorphism follows from Corollary 2.7.8(ii) of [Ger10] and the first formula
on p. 27 of [Ger10] (proof of Lemma 2.7.5). Namely, loc. cit. tells us that πw is the
unramified subquotient of (n− IndGLn(Qp)

B(Qp) (χρπ)sm)⊗ |det |(n−1)/2 (normalized induction).
But the genericity of ρp,w implies that

πw = (n− IndGLn(Qp)
B(Qp) (χρπ)sm)⊗ | det |(n−1)/2

and smooth representation theory tells us that this is also

(n− IndGLn(Qp)
B−(Qp) (χρπ)sm)⊗ | det |(n−1)/2 = (IndGLn(Qp)

B−(Qp) (χρπ)smδ−1/2
B )⊗ | det |(n−1)/2

where δB is the modulus character. We conclude by observing that

δ
−1/2
B · | det |(n−1)/2 = (ε−1 ◦ θ)sm : (z1, ..., zn) 7→

∏
|zi|i−1

Using Π(ρm,w)∅ we can make use of our formalism (Theorem I.3.4) to get the pro-
modular Fontaine-Mazur conjecture in the following form.

Theorem I.4.18. Let m be an ordinary non-Eisentein ideal of T such that ρ̄m,w is totally
indecomposable and generic for all w|p. Let ρ be pro-modular with respect to Tm and de
Rham regular. Then ρ is modular.

Proof. To conclude by Theorem I.3.4 we have to check that hypotheses (H2) and (H3) hold
for Π(ρm,w)∅. The hypothesis (H2) says that there exists an allowable set for Π(ρm,w)∅,
which means that there exists a dense set of prime ideals p in the Hecke algebra T′m
for which the associated Galois representation ρp,w (w|p is a split place) gives a Banach
representation Π(ρp,w)∅ with an injection

⊗w|pΠ(ρp,w)∅ ↪→ Ĥ0(Kp)E

We can prove it for the set P crisautom which is dense by Proposition I.4.10. Indeed, if p
corresponds to a classical automorphic representation π with the Galois representation
ρπ. Following Lemma I.4.17 we put χw = χρπ ,w · (ε−1 ◦ θ). Take χ = ⊗w|pχw and write
χ = χsmδW as above in the verification of (H1). Then by the description of locally algebraic
vectors of Ĥ0(Kp)E,l.alg from Proposition I.2.3 we see thatW∨⊗(IndG(Qp)

B−(Qp) χsm)sm injects
into Ĥ0(Kp)E,l.alg, (we use here Lemma I.4.17). Hence taking the completion we see

that the universal completion ̂
W∨ ⊗ (IndG(Qp)

B−(Qp) χsm)sm of W∨⊗ (IndG(Qp)
B−(Qp) χsm)sm sits in

Ĥ0(Kp)E . But because χ is unitary, we have

̂
W∨ ⊗ (IndG(Qp)

B−(Qp) χsm)sm = (IndG(Qp)
B−(Qp) χ)C0 = ⊗w|pΠ(ρp,w)∅
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by which we conclude.

The hypothesis (H3)[p′] (p′ is the prime ideal of T′m corresponding to ρ by our pro-
modularity assumption and Corollary I.4.12) says that we have a closed injection

Π(ρp′,w)∅ ↪→ Ĥ0(Kp)E [p′]

This is clear in our context because ρp′,w is generic and hence Π(ρp′,w)∅ is irreducible (see
Theorem 3.1.1(ii) in [BH12]).

This allows us to conclude.

We can get a more explicit result by using eigenvarieties. In [Eme06c] Emerton has
constructed the eigenvariety X associated to the group G using completed cohomology.
We do not recall here this construction explicitely (as we return to it in detail in Chapter
II), but let us mention that X parametrises (certain) pro-modular representations. Let
X [ρ̄m] be the ρ̄m-part of the eigenvariety associated to U(n). In particular every point
x ∈ X [ρ̄m] is pro-modular with respect to Tm. We denote by λx its corresponding Hecke
character and by ρx its associated Galois representation. We will return to both these
notions in detail in Chapter II.

The above theorem implies the following result

Corollary I.4.19. Let m be an ordinary non-Eisenstein ideal of Tm such that ρ̄m,w is
totally indecomposable and generic for all w|p. Let x be an E-point on the eigenvariety
X [ρ̄m](E) such that for each place w|p the representation ρx,w is regular and de Rham.
Then x is classical.

Proof. The conclusion that x is modular follows from the theorem above. To see that it is
classical, it is enough to observe that because our Galois represetation is generic at places
dividing p, every refinement is accessible. We do not explain these notions here (the reader
shall consult Chapter II).

We obtain a similar result (i.e. pro-modularity with additional assumptions implies
modularity) for U(2) in [CS13] in the setting of irreducible Galois representations (rather
than triangular).





Chapter II

Ordinary representations for U(3)
(joint with J. Bergdall)

II.1 Introduction
Breuil and Herzig have recently pursued the construction of interesting p-adic Banach
space representations associated to local Galois representations by concentrating on the
ordinary case [BH12]. In fact, if L is a finite extension of Qp and representation ρp :
G(Qp/Qp) → GLn(L) is generic and ordinary then Breuil and Herzig constructed an
admissible continuous unitary representation Π(ρp)ord on an L-Banach space by taking
successive extensions of unitary principal series. Their recipe takes as key input the
splitting behavior of ρp and thus forsees compatibility between the Galois and automorphic
sides of a p-adic Langlands program for GLn(Qp).

It is further conjectured that if ρp gives rise to Π(ρp) under a conjectural local Lang-
lands correspondence for GLn(Qp) then Π(ρp)ord should account for the maximal piece
of Π(ρp) which can be built out of principal series alone. That there is, or may be, a
discrepancy between Π(ρp) and Π(ρp)ord is an interesting feature of the situation beyond
GL2(Qp). Nevertheless, here we are concerned with the representation Π(ρ)ord and the
insights it can bring concerning the p-adic local Langlands program.

In this work we explore the global aspect of [BH12]. Let F/F+ be a CM extension of
number fields in which p is totally split and denote G = U(3) a definite unitary group in
three variables attached to F/F+. Let us fix a compact open subgroup Kp ⊂ G(Ap∞

F ).
With this data in hand, we can define the completed cohomology group of Emerton

Ĥ0(Kp)L =

lim←−
n

lim−→
Kp

H0(G(Q)\G(A∞F )/KpK
p,Zp/pnZp)

⊗Zp L

where Kp runs over open compact subgroups of G(Qp). This space can be seen as a model
for p-adic automorphic representations on U(3).

If π is an automorphic representation on U(3) then it has an associated (in the usual
sense) global Galois representation ρ = ρπ : Gal(F̄ /F )→ GL3(L) (extending L if necces-
sary). If π has tame level Kp then ρπ is unramified away from a finite set depending on
Kp.

For each place v | p we write v = ṽṽc and consider the local Galois representation
ρv := ρṽ : Gal(F ṽ/Fṽ) ' Gal(Qp/Qp) → GL3(L). If ρṽ is generic and ordinary then the
same is true for ρṽc and Π(ρṽ)ord only depends on v | p in F+. The following (see Theorem
II.3.24) is our main result. It is a weaker form of the Conjecture 4.2.2 in [BH12].
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Theorem A. Suppose that for all v | p, ρv is generic ordinary and totally indecomposable.
Then there is a closed embedding

⊗̂
v|p

Π(ρv)ord ↪→ Ĥ0(Kp)L.

This result, or the conjectures of Breuil and Herzig, can be seen as a generalization,
from GL2 to U(3), of the work of Breuil and Emerton [BE10]. There are similarities and
differences between our work and [BE10]. Our representation-theoretic results naturally
overlap with [BE10]. Most notably we give an adjunction formula (Theorem II.3.12)
between certain principal series and completed cohomology. The theorem is then reduced,
via the adjunction formula, to exhibiting the existence, or non-existence, of certain points
on an eigenvariety XKp for U(3) (see Section II.2 for information on eigenvarieties). The
same reduction is done in [BE10] but our argument works intrinsically on the eigenvariety
by studying the variation of Galois representations and making use of Kisin’s famous result
on the analytic continuation of crystalline periods over p-adic families. We remark also
that a similar result is proven in [BH12] using completely different techniques. However,
they put stronger hypotheses on ρ, in particular they assume that each ρ̄v is totally
indecomposable (see Theorem 4.4.8 in [BH12]).

To end this introduction, let us remark briefly on the setting we have restricted our-
selves to at the present. As indicated following Theorem A, the adjunction formula reduces
our weak form of Breuil-Herzig to the existence or not of certain Hecke eigensystems in
spaces of p-adic automorphic forms. In the totally indecomposable case, this amounts to
showing certain Hecke eigensystems do not exist in spaces of p-adic automorphic forms.
The converse, constructing “overconvergent companion forms”, is a more serious matter.
In our work in progress that construction will allow us to prove Theorem A with only
the hypothesis that ρv be indecomposable above p. This is done by the computations of
this text along with generalizing the Galois-theoretic construction of companion forms in
[Ber]. For general conjectures in this line, see [Bre13].

We remark that our methods are general enough to be applicable in other contexts.
First, the restriction to n = 3 is only used for brevity at the moment and we plan to have
a sequel dealing with general n ≥ 3. Moreover, we can also prove similar results in the
non-compact case for unitary groups U(2, 1). Details for that will be provided elsewhere.

II.1.1 Notations

We introduce notations which we will use constantly throughout the text. Let G =
GL3(Qp) with the Borel B being the upper triangular matrices and its opposite Borel
B− the lower triangular matrices. The diagonal torus is T . The modulus character is
δB : T → Q×p given by | · |2 ⊗ 1 ⊗ | · |−2. For an algebraic weight k we denote by δk the
corresponding highest weight character of T .

Let S3 be the symmetric group.

We denote the cyclotomic character by ε and we normalize the local class field theory
so that ε = z|z| (as a character of Q×p ) with the Hodge-Tate weight −1.

II.2 Eigenvarieties

Before discussing eigenvarieties, we begin with local preliminaries on two separate notions
of refinements.
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II.2.1 Refinements

Here we recall two notions of refinement, one on the Galois side and one on the automorphic
side. In the case of Galois representations, we explicitly highlight the case of crystalline
representations which are ordinary.

Suppose that ρ : GQp → GL3(L) is a crystalline representation all of whose crystalline
eigenvalues are distinct and lie in L×. We further assume that ρ is regular, i.e. the
Hodge-Tate weights are distinct, with Hodge-Tate weights h1 < h2 < h3.

Definition II.2.1. A refinement R of ρ is an ordering R = (φ1, φ2, φ3) for the crystalline
eigenvalues appearing in Dcris(ρ).

If {φ1, . . . , φi} is a list of crystalline eigenvalues then we denote by wt(φ1, . . . , φi)
the Hodge-Tate weight of the line Dcris(∧iρ)ϕ=φ1···φi ⊂ Dcris(∧iρ). It must be a sum of
distinct Hodge-Tate weights for ρ. Thus a refinement R defines an ordering (s1, s2, s3)
of the Hodge-Tate weights by declaring wt(φ1) = s1, wt(φ1, φ2) = s1 + s2 and s3 is the
unique weight not equal to s1 or s2.

Definition II.2.2. If R is a refinement then we define its weight type as the permutation
τ ∈ S3 such that si = hτ(i). If τ = 1 we say that R is non-critical. Otherwise, we say that
R is critical of type τ .

For example if ρ = ψ1 ⊕ ψ2 for two crystalline characters ψi then there are two refine-
ments, one non-critical and one critical of type τ = (12).

We now specialize to the case that ρ is upper triangularizable (and still regular with
distinct crystalline eigenvalues). Thus we assume that

ρ ∼

ψ1 ∗ ∗
0 ψ2 ∗
0 0 ψ3

 (II.1)

with the ψi crystalline characters. Without loss of generality (this uses the crystalline
property) we also assume that ψi has Hodge-Tate weight hi, i.e. that ρ is ordinary. If we
denote by φψi the crystalline eigenvalue of ψi then vp(φψi) = hi. Since Dcris(ρ) is weakly
admissible we have that

wt(φψi) ≤ vp(φψi) = hi (for i = 1, 2, 3)
wt(φψi , φψj ) ≤ vp(φψi) + vp(φψj ) = hi + hj (for each pair (i, j))

The representation (II.1) fixes one particular refinement Rnc = (φψ1 , φψ2 , φψ3) of ρ. Any
other refinement R must be of the form R = Rσnc := (φψσ(i))i with σ ∈ S3.

Lemma II.2.3. Rnc is always non-critical. If ρ is totally indecomposable then R(12)
nc and

R
(23)
nc are non-critical as well.

Proof. Since wt(φψ1) ≤ h1 and h1 is the least Hodge-Tate weight we have wt(φψ1) = h1.
Similarly, wt(φψ1 , φψ2) = h1 + h2. Thus Rnc is non-critical.

Now assume that ρ is totally indecomposable and consider R(12)
nc = (φψ2 , φψ1 , φψ3) with

weight ordering (s1, s2, s3). By what we just said, s1 + s2 = wt(φψ2 , φψ1) = h1 +h2 and so
R

(12)
nc is critical if and only if wt(φψ2) = h2. In that case, however, Dcris(ρ)ϕ=φψ2 ⊂ Dcris(ρ)

is a weakly-admissible filtered ϕ-module and thus ψ2 must define a subrepresentation of
ρ, contradicting that ρ is totally indecomposable.

The case of R(23)
nc is similar. If it were critical then the quotient ρ/ψ1 would split into

ψ2 ⊕ ψ3.
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Remark II.2.4. If ρ is totally indecomposable then it is possible that a Rσ is critical if
σ /∈ {1, (12), (23)}.

We end this section with a short definition.

Definition II.2.5. Suppose that ρ is ordinary and write ρ as in (II.1). We say that ρ is
generic ordinary if pφψi 6= φψi+1 for i = 1, 2.

We suppose that ρ is ordinary as in (II.1). Using local class field theory we write each
character ψi as

ψi = z−hi nr(φψi).

It follows from the definition and this expression that ρ is generic ordinary if and only
if ψiψj /∈ {1, ε±1} for each i 6= j. Thus ρ is generic ordinary if and only if ρ is generic
ordinary in the sense of [BH12, Section 3.3].

We now consider the automorphic side. The analog of a crystalline GQp-representation
is an unramified principal representations of GL3(Qp). Denote by B(Qp) the upper tri-
angular Borel in GL3(Qp) and T (Qp) the diagonal torus inside B(Qp). Suppose that
θ is a smooth character of T (Qp). In that case we can form the smooth induction
IndGL3(Qp)

B(Qp) (θ)sm. If π is smooth admissible representation of GL3(Qp) which is unramified

then π necessarily appears as the unique unramified Jordan-Holder factor of IndGL3(Qp)
B(Qp) (θ)sm

for some smooth θ. The character θ is well-defined up to an action of S3: if σ ∈ S3 then
we denote

θ(σ) = θσ(δ−1/2
B(Qp))

σδ
1/2
B(Qp).

Then, the unique characters θ′ such that π appears in the Jordan-Holder series for IndGL3(Qp)
B(Qp) (θ′)sm

are those of the form θ′ = θ(σ).

Definition II.2.6. Let π be an unramified smooth admissible representation of GL3(Qp).
A refinement of π is the choice of a smooth character θ such that π ⊂ IndGL3(Qp)

B(Qp) (θ)sm.

In the terminology of [BC09], a refinement is the choice of θ such that π appears as a
Jordan-Holder factor of IndGL3(Qp)

B(Qp) (θ)sm and our refinement is their accessible refinement.
Thus every σ ∈ S3 defines a refinement θ(σ) but only some σ define an accessible refinement.
To that point, however, there is an equivalence

IndGL3(Qp)
B(Qp) (θ)sm is unramified ⇐⇒ pj−i

θi(p)
θj(p)

6= p±1 for i 6= j. (II.2)

If that is the case then π = IndGL3(Qp)
B(Qp) (θ)sm, every refinement is accessible and thus

π ⊂ IndGL3(Qp)
B(Qp) (θ(σ))sm for all σ ∈ S3. Thus except in the exceptional case (II.2) , one

refinement θ for π gives all the refinements θ(σ) for π.

II.2.2 Definite eigenvarieties

Here we will outline definite eigenvarieties. Our approach is to first describe the eigenva-
riety and its properties, and second to refer to an explicit construction of Emerton. The
explicit construction will be used in Section II.3 to generalize certain results of [BE10].

We fix F+ a totally real field extension of the rational number Q and F/F+ a CM
extension. We assume that p is totally split in F and we let Σp be the set of places v | p
in F+. For each v ∈ Σp we fix now the choice of a place ṽ above v.
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Let G = U(3, F/F+) be a definite unitary group in three variables. If w is a place of
F+ split in F then each choice w̃ of place over w defines an isomorphism

G(F+
w ) w̃' GL3(Fw̃)

In particular, for each v ∈ Σp we have a fixed isomorphism G(F+
v ) ' GL3(Qp). Denote

now GΣp = G(F+ ⊗Q Qp). Under these identifications we define TΣp to be the diagonal
torus, BΣp the upper triangular Borel and B−Σp its lower triangular Borel. We denote as
well N0

Σp = N(OF+ ⊗Z Zp) integral points of the unipotent part NΣp of BΣp . Finally, we
let T+

Σp = {t ∈ TΣp | tN0
Σpt
−1 ⊂ N0

Σp}.
We fix a compact open subgroup Kp ⊂ G(Ap∞

F+). We factor Kp into a product Kp =∏
v-pK

p
v . Choose a finite set of places Σp of F+ such that if v /∈ Σp then Kp

v is maximal
hyperspecial compact in G(F+

v ). We write the above factorization as

Kp =
∏
v/∈Σ

Kp
v ×

∏
v∈Σ

Kp
v =: KpΣpKp

Σp .

We define the unramified Hecke algebra

H(Kp)nr := H(G(ApΣp
F+ )//KpΣp).

The places ṽ above v ∈ Σp define isomorphisms G(F+
v ) ' GLn(Fṽ) = GL3(Qp). If

we denote Tv the diagonal torus in G(F+
v ) under this identification then we can define

Tv := Homloc . an(Tv,Grig
m ) and TΣp =

∏
v∈Σp Tv = Homloc . an(TΣp ,Grig

m ).
In what follows we fix an isomorphism Q̄p ' C. Suppose that k ∈ TΣp is a dominant

weight for GΣp and let Wk be the irreducible algebraic representation of GΣp with highest
weight k. The space Ak(G,Kp) of automorphic forms of weight k and tame level Kp

decomposes as a H(Kp)nr-module

Ak(G,Kp) '
⊕

π∞'Wk

(πK
pΣp

f )m(π) (II.3)

with π running over irreducible automorphic representations for G(AF+) and m(π) the
multiplicity of π appearing in L2(G(F+)\G(AF+)). If π is an automorphic representation
for G(AF+) of tame level Kp we denote by λπ : H(Kp)nr → Q̄p the canonical character.

At p we consider a place v ∈ Σp and denote by πv the local component of π, a smooth
admissible representation of G(F+

v ) ' GL3(Qp). Write

πΣp =
⊗
v∈Σp

πv.

We say that π is unramified at p if πΣp is unramified, or equivalently, each πv is unramified.
If πΣp is unramified then a refinement θ is the choice of a tuple θ = (θv)v∈Σp ∈ TΣp where
θv is a refinement of πv for each v ∈ Σv. Equivalently a refinement θ is the choice of a
smooth character of TΣp such that πΣp ⊂ IndGΣp

BΣp
θ.

We now consider the infinite component π∞v (identified using our choice ṽ | v for
v ∈ Σp) of π. It is an irreducible algebraic representation of the compact group G(F+

∞v
) '

U(3,R) and thus has an associated dominant weight kv = (k1,v ≥ k2,v ≥ k3,v). We denote
by k = (kv)v∈Σp the corresponding highest weight for GΣp and the highest weight character

δk := (zk1,v
1 ⊗ zk2,v

2 ⊗ zk3,v
3 )v ∈ TΣp .
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Thus, for a given π unramified at p, the choice of a refinement θ defines a locally algebraic
character χ := θδk ∈ TΣp .

We use X = XKp to denote the eigenvariety of tame level Kp. It is a reduced rigid
analytic space equipped as well with the following data

1. a finite map χ : X → TΣp

2. a character λ : H(Kp)nr → Γ(X,Orig
X ), and

3. a Zariski dense set of points Xcl ⊂ X(Qp).

If x ∈ X(L) we denote by χx = χ(x) ∈ TΣp(Qp) and by λx the induced character

H(Kp)nr λ−→ Γ(X,Orig
X ) evalx−→ L.

Then the natural map

X(Qp)→ TΣp(Qp)×Hom(H(Kp)nr,Qp)
x 7→ (χx, λx).

defines a bijection between Xcl and pairs (χ, λπ) attached to classical automorphic rep-
resentations π and for G(AF+) which are unramified at p and the choice of a refinement
described above.

If x ∈ Xcl then χx knows both the weight of x and information at p. We separate this
out as follows. If v ∈ Σp we denote Wv = Hom(T (OF+

v
),Grig

m ) and WΣp =
∏
v∈ΣpWv.

Thus there is a natural projection TΣp → WΣp and we let the weight map κ be the
composition

X
χ−→ TΣp

proj−→WΣp

This deserves to be called the weight map for the following reason. If z = (χ, λ) is a
classical point associated to an automorphic representation π of weight k = (kv) then
χ = θδk with θ smooth, so that δ(z) = δk.

The succinct description of the eigenvariety is enough for some purposes. But the
conjectures of Breuil and Herzig [BH12] deal with certain subrepresentations of spaces of
p-adic automorphic forms and to understand this, it will be convenient for us to describe
one source of an eigenvariety construction, due to Emerton.

We let L/Qp be a finite extension with ring of integers OL and uniformizer $L. The
p-adically completed cohomology of tame levelKp and with coefficients in L is by definition

Ĥ0(Kp)L =

lim←−
n

lim−→
Kp

H0(G(Q)\G(A∞F )/KpK
p,Zp/pnZp)

⊗Zp L

where Kp runs over compact open subgroups of G(Qp). This is an L-Banach space
equipped with a continuous representation of GΣp ×H(Kp)nr. If λ : H(Kp)nr → Qp is a
character we denote by Ĥ0(Kp)λL the corresponding GΣp-representation of the eigenspace
with respect to the character λ.

Within the space Ĥ0(Kp)L we can take the locally analytic vectors Ĥ0(Kp)L,an and
then this supplies us with a GΣp-representation to which we can apply Emerton’s Jacquet
functor (see [Eme06a]). Thus we have a representation JBΣp (Ĥ0(Kp)L,an) of the torus TΣp .
For χ ∈ TΣp , we denote by JχBΣp

(−) the χ-eigenspace. We can read off the χ-eigenspace
by the isomorphism

JχBΣp
(Ĥ0(Kp)L,an) ' Ĥ0(Kp)

N0
Σp ,T

+
Σp=χ

L,an .
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The above isomorphism is Hecke equivariant and thus we can put the Hecke eigensystem
on both sides. We refer the reader to Proposition 2.3.3 in [Eme06c] for it and for the
following proposition.

Proposition II.2.7 (Emerton). Suppose that L′/L is a finite extension. A pair (χ, λ) ∈
TΣp(L′)×Hom(H(Kp)nr, L′) defines a point (χ, λ) ∈ X(L′) if and only if

JχBΣp
(Ĥ0(Kp)λL,an) = Ĥ0(Kp)

N0
Σp ,T

+
Σp=χ,λ

L,an 6= 0.

II.2.3 The refined family of Galois representations

The eigenvariety carries as well a p-adic family of Galois representations. Suppose that
π is a classical automorphic representation on G(AF+) of tame level Kp. We denote
Σ = Σp ∪Σp and by the same symbol the set of places of F above Σ. The work of Blasius
and Rogawski (and many others in a more general situation) associates to π a p-adic Galois
representation

ρπ : GF,Σ → GL3(Qp).

It satisfies local-global compatibility at each finite place. If w̃ is a place of F and ρ is a
representation of GF , we denote by ρw̃ the restriction ρ

∣∣
GFw̃

. If v ∈ Σp we further denote
by ρv the representation ρv := ρṽ. The representations ρπ satisfy the following

1. If w̃ /∈ Σ is a split place of F then the Frobenius semi-simple Weil-Deligne repre-
sentation associated to ρw̃ corresponds to the GL3(Fw̃) w̃' GL3(F+

w )-representation
πw| det−1 | under the local Langlands correspondence for GL3(Fw̃).

2. If v ∈ Σp then ρπ,v := ρπ,ṽ is de Rham with Hodge-Tate weights hi,v = −ki,v + i− 1.

3. If πΣp is unramified then ρπ,v is crystalline for each v ∈ Σp. Moreover, if we make
the choice of a refinement θ for πΣp then the set of crystalline eigenvalues of ρπ,v are
given by {p2θ1,v(p), pθ2,v(p), θ3,v(p)}.

By Chebotarev’s theorem, the first condition classifies ρπ up to the semi-simplification.
Consider the eigenvariety X = XKp of tame level Kp again. In that case, the above

associates to each classical point z ∈ Xcl a Galois representation ρz := ρπ independent of
the refinement.

The choice of a refinement for πΣp , however has the following interpretation. Suppose
that z ∈ Xcl corresponds to the refinement θ of πΣp . Then, for all v we can define a
refinement

Rz,v := (φ1,v, φ2,v, φ3,v) = (p2θ1,v(p), pθ2,v(p), θ3,v(p))

of the local representation ρz,v. Recall that in Section II.2.1 we defined the weight type of
a refinement and what it means for a refinement to be non-critical.

Definition II.2.8. For a point z ∈ Xcl we define its weight type to be the Σp-tuple
τ = (τv)v∈Σp where τv is the weight type of Rz,v. We say that z is non-critical if it is of
weight type (1v)v and critical of type τ otherwise.

If we denote tz : GF,Σ → Qp the function g 7→ tr(ρz(g)) then tz is a three dimensional
pseudocharacter of GF,Σ and extends on the eigenvariety to a global pseudocharacter

t : GF,Σ → Γ(X,Orig
X ).
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In particular, for each closed point x ∈ X(Qp), specializing the pseudocharacter at x we
get tx : GF,Σ → Qp and thus by Taylor’s theorem [Tay91, Theorem 1(2)] there is a unique
semi-simple representation ρx : GF,Σ → GL3(Qp) such that tr(ρx) = tx.

Denote now
WΣp =

∏
v∈Σp

Wv Wv = Hom(T (OF+
v

),Grig
m ).

Finally denote by η the composition

X
κ−→WΣp

log−→
∏
v∈Σp

(
Grig
a

)3 s−→
∏
v∈Σp

(
Grig
a

)3
(II.4)

where s is the affine change of coordinates(
Grig
a

)3 s−→
(
Grig
a

)3

(u1, u2, u3) 7→ (−u1,−u2 + 1,−u3 + 2).

If x ∈ X(Qp) then we write ηΣp(x) = (ηi,v(x))v ∈
∏
v∈Σp

(
Qp

)3
. In this notation, if

z ∈ Xcl then ηi,v(z) = hi,v is the ith Hodge-Tate weight at the place ṽ. Thus by [BC09,
Lemma 7.5.12] we have that for a general x ∈ X(Qp), η(x) is recording the Hodge-Tate-Sen
weights of ρx,v.

If x ∈ X(L) and v ∈ Σp we denote by χv,x = χ1,v,x⊗χ2,v,x⊗χ3,v,x the vth coordinate of
the χx ∈ TΣp(L). Let n = 3 for clarity. We then define analytic functions Fi,v ∈ Γ(X,Orig

X )
by

Fi,v(x) = pn+1−2iχi,v,x(p). (II.5)

If z = (θδk, λ) ∈ Xcl is a classical point then

pηi,v(z)Fi,v(z) = phi,vpn+1−2iθi,v(p)pki,v

= pn−iθi,v(p).

Thus for z ∈ Xcl the collection Rz = (Rz,v) of refinements is given by

Rz,v = (pη1,v(z)F1,v(z), pη2,v(z)F2,v(z), pη3,v(z)F3,v(z)).

In particular, X together with the Galois pseudorepresentation t of GF,Σ forms a
refined family of Galois representations in the sense of [BC09, Ch. 4]. This implies that
we have the analytic continuouity of crystalline periods: for each x ∈ X(Qp), each v ∈ Σp

and each i we have

Fil0Dcris(∧iρx,v(η1,v(x) + · · ·+ ηi,v(x)))ϕ=F1,v(x)···Fi,v(x) 6= 0.

In particular, we note the following result

Proposition II.2.9. Suppose that x ∈ X(Qp) and ηi,v(x) ∈ Z for all i, v. Then

Filη1,v(x)+···+ηi,v(x)Dcris(∧iρx,v)ϕ=pη1,v(x)F1,v(x)···pηi,v(x)Fi,v(x) 6= 0.

The proof of this has been given in varying levels of generality in many different articles
now: [Kis03], [BC09], [Liu13], [KPX].
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II.3 Ordinary representations and the conjecture of Breuil-
Herzig

II.3.1 Generic ordinary points on eigenvarieties

We now further elucidate the previous sections in the case of ordinary points on X. We
use the notation of the previous section.

Recall that a classical point z = (χ, λ) inX(Qp) is associated to the choice of a classical
automorphic representation π of G(AF+) with tame level Kp, spherical above p, and the
choice of a smooth character θ such that

πΣp ⊂ IndGΣp
BΣp

θ.

The character χ is then specified as χ = θδk where k = (kv) is the list of dominant weights
of π∞.

Fix for the moment an automorphic representation π such that π has tame level Kp,
πΣp is unramified, π has weight k = (kv)v∈Σp .

Definition II.3.1. We say that π is generic ordinary if ρπ,v is generic ordinary for all
v ∈ Σp.

Suppose that π is generic ordinary and write

ρπ,v ∼

ψ1,v ∗ ∗
ψ2,v ∗

ψ3,v

 (II.6)

with the characters ψi,v crystalline of Hodge-Tate weights h1,v < h2,v < h3,v for each
v ∈ Σp. If we denote φψi,v the crystalline eigenvalue of ψi,v then

ψi,v = z−hi,v nr(φψi,v), (II.7)

seen as a character of Q×p using local class field theory. Now consider the smooth character
of Q×p given by

θnc
v = | · |2 nr(φψ1,v)⊗ | · |nr(φψ2,v)⊗ nr(φψ3,v).

The character θnc is a refinement of πΣp and defines a point znc = (θncδk, λ) ∈ Xcl.
Since ρπ,v is assumed generic ordinary, it is easy to see θnc

v satisfies the condition (II.2)
for all v ∈ Σp. Thus the smooth admissible representation IndG(F+

v )
B(F+

v )(θ
nc
v )sm is unramified

and we can explicitly list the other refinements of πΣp as follows. If σ = (σv)v ∈ (S3)Σp

then we denote by θnc,(σ) = (θnc,(σv)
v )v the Σp-tuple of characters given by

θnc,(σv)
v := (θnc

v )σv(δ−1/2
B(F+

v ))
σvδ

1/2
B(F+

v ).

By the criterion (II.2) we have that θnc,(σ) defines a refinement of πΣp and all the refine-
ments are of this form. Thus each of the points z(σ)

nc = (θnc,(σ)δk, λ) ∈ Xcl is a point such
that ρ

z
(σ)
nc

= ρπ.

Definition II.3.2. A point z ∈ Xcl is called generic ordinary if there exists a generic
ordinary π such that z = z

(σ)
nc as above.
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We could equivalently phrase the definition as follows. Suppose that z ∈ Xcl is a point
such that ρz,v is generic ordinary for all v ∈ Σp. We then write ρz,v as in (II.6) and this
necessarily defines a point znc = (θncδk, λ) ∈ Xcl; the point z is then one of the points
z

(σ)
nc = (θnc,(σ)δk, λ). The tuple σ is then well-defined.

It will be convenient for us to realize that in terms of the Galois characters ψi,v we
have (use (II.7)) that

θnc,(σv)
v = (ψσv(1)z

hσv(1) ⊗ ψσv(2)z
hσv(2) ⊗ ψσv(3)z

hσv(3))(| · |2 ⊗ | · | ⊗ 1).

Evaluating at p we get that

p2−iθ
nc,(σv)
i,v (p) = φψσv(i),v .

Thus in the generic ordinary case, to give a refinement of πΣp is the same as to give a
collection R = (Rv)v∈Σp of refinements of ρπ,v.

Definition II.3.3. An element σ ∈ (S3)Σp is called simple if σv ∈ {1, (12), (23)} for all
v ∈ Σp. A generic ordinary point z ∈ Xcl is called simple if z = z

(σ)
nc with σ simple.

Recall that in Section II.2.3 we defined what it means for a point z ∈ Xcl to be critical
or non-critical.

Proposition II.3.4. Suppose that z is generic ordinary and write z = z
(σ)
nc .

• If σ = 1 then z is non-critical.

• If z is simple and ρz,v is totally indecomposable for all v ∈ Σp then z
(σ)
nc is non-

critical.

Proof. We write ρz,v as in (II.6) and define the refinement Rnc,v = (φψ1,v , φψ2,v , φψ3,v) of
ρz,v. The corresponding refinement at z(σ)

nc is given by Rσnc,v. Thus both statements follow
from Lemma II.2.3.

II.3.2 Bad points on the eigenvariety

We now introduce the notion of badness for points z = (χ, λ) on the eigenvariety X.
This notion will turn out to be crucial when relating principal series to the completed
cohomology group. It is related to the notion of z being critical but we will not make this
completely precise in this work. It can be defined in general for any connected reductive
algebraic group (G,B) to which we can associate an eigenvariety and we will take this
approach in a sequel.

Here though we consider the group GΣp and its upper triangular Borel BΣp and torus
TΣp . It will be important for us to use the infinitesimal actions of the Lie algebras of these
groups. Thus we use gΣp , bΣp , tΣp , n−Σp (for the opposite unipotent to nΣp = bΣp/tΣp) etc.
to denote the corresponding Lie algebras. We use t∗Σp = Hom(tΣp ,Qp) to denote the dual
space to tΣp (i.e. the linear dual space of tΣp ⊗Qp Qp). If χ ∈ TΣp(Qp) then its differential
dχ is an element of t∗Σp .

If we drop the subscript Σp it is because we are talking about the group GL3(Qp). We
use the notation α1 = e1−e2 and α2 = e2−e3 to denote the usual two simple positive roots
of gl3. They generate b; the third positive root of gl3 is α3 = α1 +α2. Since gΣp = (gl3)Σp ,
the roots of gΣp are of the form α = (αv)v∈Σp where αv is a root of gl3 and αv = 0 except
possibly at one place v ∈ Σp. A root α 6= 0 is positive if and only if αv > 0 for the unique
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place v ∈ Σp at which αv 6= 0. Since the roots of gΣp are all algebraic, we naturally confuse
notation and speak about roots α ∈ t∗Σp and α ∈ TΣp .

If δ ∈ TΣp and α is a root, denote by α∨ the corresponding co-root. We then consider
the locally analytic character 〈δ, α∨〉 := δ ◦ α∨ : Grig

m → Grig
m . Let ρ0 denote the half-sum

of the positive roots.

Definition II.3.5. A character δ ∈ TΣp is:

• α-integral if 〈δ, α∨〉 is of the form z 7→ zk for some k ∈ Z, in which case we use
〈δ, α∨〉 to also denote this integer, and

• α-dominant if δ is α-integral and 〈δ + ρ0, α
∨〉 > 0.

A character χ ∈ TΣp is locally α-dominant if it is of the form χ = θδ where θ is smooth
and δ is α-dominant.

Recall that the Weyl group associated to our choice of root system has an associated
"dot action" on elements of t∗Σp . The Weyl group (S3)Σp acts on weights µ ∈ t∗Σp by the
formula

σ · µ = σ(µ+ ρ0)− ρ0,

where the σ on the right hand side is the usual permutation action.
For each simple positive root α we have the associate Weyl element sα ∈ (S3)Σp and

the dot action on tΣp extends to elements χ ∈ TΣp which are locally α-integral in an
apparent way. Indeed, when χ is α-integral the element sα · dχ ∈ t∗Σp differs from dχ only
by integers. And thus there is a natural character sα ·χ ∈ TΣp such that d(sα ·χ) = sα ·χ
and the smooth parts of χ and sα · χ are the same. As an example, consider an element
δ ∈ T alg

Σp of the form δv = zk1,v ⊗ zk2,v ⊗ zk3,v . Then

(sα · δ)v =


zk1,v ⊗ zk2,v ⊗ zk3,v if αv = 0
zk2,v−1 ⊗ zk1,v+1 ⊗ zk3,v if αv = α1

zk1,v ⊗ zk3,v−1 ⊗ zk2,v+1 if αv = α2.

(II.8)

This construction can be iterated to define a dot action of Weyl group elements sα1 · · · sαr
on locally integral elements of TΣp . For the reader who is familiar with Verma modules
(see below), the next definition will look familiar.

Definition II.3.6. Suppose that χ, χ′ ∈ TΣp. We write χ′ ↑ χ if χ = χ′, or there exists a
simple positive root α such that χ is locally α-dominant and sα · χ = χ′. We say that χ′
is strongly linked to χ if there exists a sequence of simple positive roots sα1 , · · · , sαr such
that

χ′ = (sα1 · · · sαr) · χ ↑ (sα2 · · · sαr) · χ ↑ · · · ↑ sαr · χ ↑ χ.

Before defining bad, let us point out what is happening in the most interesting case
where χ = θδk and δk is a dominant weight (that is k1 > k2 > k3). Since this is just an
illustration, let us assume for simplicity that there is only one place and thus two simple
positive roots α1 and α2. In that case, sα · δ is defined for all simple positive roots α.
Moreover, if k is regular then it is easy to see that w · χ is defined for all elements w ∈ S3
and that w · χ is strongly linked to χ by a chain of length equal to the length of w in the
Bruhat order on S3.

We now return to the eigenvariety setting of the previous sections. Thus we have
our eigenvariety XKp(Qp) of tame level Kp parameterizing eigensystems (χ, λ) ∈ TΣp ×
H(Kp)nr acting on spaces of p-adic automorphic forms.
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Definition II.3.7. Suppose that z = (χ, λ) ∈ XKp(Qp). We say that the point z is bad if
there exists a pair (χ′, λ) ∈ XKp(Qp) such that χ′ 6= χ and χ′ is strongly linked to χ. If z
is bad, we denote by w · z := (w ·χ, λ) ∈ XKp(Qp) (where w ·χ is strongly linked to χ) the
corresponding companion points on XKp(Qp).

Recall that in Section II.2.3 we defined the function η interpolating the Hodge-Tate-
Sen weights and the functions Fi ∈ Γ(X,Orig

X ) which, after normalization, interpolate
crystalline eigenvalues. For each simple positive root α of GΣp we simultaneously view its
associated reflexion sα as an element of the Weyl groups (S3)Σp . Thus for each v ∈ Σp we
have a natural action of αv on {1, 2, 3}.

Lemma II.3.8. Suppose that z is bad and let x(z) = w · z be a point strongly linked to z.
Then ρz ' ρx(z). Furthermore, for all v ∈ Σp and i = 1, 2, 3 we have

1. ηi,v(x(z)) = ηwv(i),v(z) and

2. pηi,v(x(z))Fi,v(x(z)) = pηi,v(z)Fi,v(z).

Proof. By definition λz = λx(z) and thus ρz ' ρx(z) up to semi-simplifcation by Cheb-
otarev. However, since each is assumed semi-simple we get equality on the nose. The
other two identities follow from definition of bad points and the description (II.4) (respec-
tively (II.5)) of the map η (respectively the Fi).

Proposition II.3.9. If z ∈ Xcl is bad then z is critical.

Proof. Suppose that z is bad and let x be a point strongly linked to z. Without loss of
generality we can assume that x = sα · z for some simple positive root α. By Lemma
II.3.8, the point x has integral Hodge-Tate weights at each place v ∈ Σp and ρx,v ' ρz,v.
Thus Proposition II.2.9 and Lemma II.3.8 implies that

0 6= Filηαv(i),v(z)Dcris(ρz,v)ϕ=pη1,v(z)F1,v(z)

0 6= Filηαv(1),v(z)+ηαv(2),v(z)Dcris(∧2ρz,v)ϕ=pη1,v(z)+η2,v(z)F1,v(z)F2,v(z).

If αv = e1 − e2 for some v ∈ Σp then the first equation implies that z is critical; if
αv = e2 − e3 for some v ∈ Σp then the second equation implies the same.

Remark II.3.10. The converse of Proposition II.3.9 is also true but requires slightly more
work. Since we do not need it here, we save it for a sequel.

Corollary II.3.11. If z ∈ Xcl is a simple, generic ordinary point and ρz,v is totally
indecomposable then z is not bad.

Proof. Combine Proposition II.3.4 and Proposition II.3.9.

II.3.3 Principal series and completed cohomology

We now use results on bad points to prove that certain principal series appear in the com-
pleted cohomology. Our main result in this subsection is an adjunction formula analogous
to Theorem 5.5.1 and Proposition 5.2.1 in [BE10]. We apply this result to points z(σ)

nc
defined above. Our adjunction formula follows from the more general adjunction formula
given by the main result of Emerton [Eme10]. In order to apply Emerton’s result, we first
need to verify two separate lemmas.
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We introduce some notations from [Eme06c]. Let E be the coherent sheaf on TΣp
that corresponds to the strong dual of JBΣp (Ĥ0(Kp)L,an) and let A be the commutative
subring of End(E) generated byH(Kp)nr. Proposition 2.3.8 of [Eme06c] shows that SpecA
contains the eigenvariety X = XKp as a closed subspace. We will prove our adjunction
formula for points of SpecA.

Let (χ, λ) be a point of SpecA. We say that (χ, λ) is bad if there exists a pair (χ′, λ) ∈
XKp(Qp) such that χ′ 6= χ and χ′ is strongly linked to χ. This extends Definition II.3.7.

We write Lχ for the one-dimensional space underlying χ. Let δBΣp = (δBv)v∈Σp be
the Σp-tuple of modulus characters. We now prove our main theorem of this subsection,
which is the following adjunction formula.

Theorem II.3.12. Let z = (χ, λ) ∈ SpecA be not bad. Then there exists an isomorphism

HomGΣp ((IndGΣp
B−Σp

χδ−1
BΣp

)an, Ĥ0(Kp)λL,an) ' Ĥ0(Kp)
N0

Σp ,T
+
Σp=χ,λ

L,an ' JχBΣp
(Ĥ0(Kp)λL,an)

where we have denoted by (IndGΣp
B−Σp

χδ−1
BΣp

)an the analytic induction of χδ−1
BΣp

seen as a

B−Σp-representation.

Before giving the proof we recall necessary material on Verma modules together with
some constructions of Emerton. We will ignore some of subscripts Σp to make our writing
clearer and write simply g, b, G, T, T+, B,B−, N,N0, δ for gΣp , bΣp , GΣp ,TΣp , T

+
Σp ,BΣp ,B−Σp ,

NΣp ,N0
Σp , δBΣp .

Recall that if H is any subgroup of G, then a (g, H)-module is a g-module V with a
linear action of H such that for any X ∈ g, h ∈ H, v ∈ V we have h ·X · v = Adh(X)hv.

If a g-module V is locally n-nilpotent, then it carries a canonical (g, N)-structure
obtained by integrating the n-action. Moreover, if V has a structure of a (g, T )-module,
then the latter extends to a (g, B)-structure by integration of the n-action.

For a locally analytic character χ of T we define

M(χ) = U(g)⊗U(b) Lχ

and
M(χ)∨ = HomU(b−)(U(g), Lχ)n∞

We endow M(χ) (respectively, M(χ)∨) with a g-action by left translations (respectively,
right translations) on U(g). This action is locally nilpotent. We let T act by the adjoint
action on U(g) and by the character χ on Lχ. This gives a structure of a (g, T )-module
on both M(χ) and M(χ)∨, which extends canonically to a structure of a (g, B)-module.

Recall the decompostion U(g) = U(b−)⊕ U(g)n. We consider the map

U(g)→ U(g)/U(g)n→ U(b−) χ→ L

as an element v∨ of M(χ)∨. It is killed by n and is a χ-eigenvector for T , therefore there
is a unique (g, B)-equivariant map

αχ : M(χ)→M(χ)∨

which takes vχ := 1⊗ 1 to v∨.

Lemma II.3.13.
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(1) The map αχ is the unique (up to a scalar) (g, B)-equivariant map M(χ) → M(χ)∨.
Its image L(χ) is an irreducible (g, B)-module.

(2) Modules M(χ) and M(χ)∨ have finite length and their simple subquotients are of the
form L(χ′) where χ′ is strongly linked to χ.

Proof. (1) As g-modules, M(χ) is the Verma module Ver(dχ), M(χ)∨ is the dual Verma
module Ver(dχ)∨ and αχ is the usual (unique up to a scalar) map Ver(dχ) → Ver(dχ)∨
whose image is known to be the simple g-module L(dχ) of highest weight dχ. Since αχ is
also B-equivariant, we see that its image is a simple (g, B)-module which extends L(dχ).

(2) The corresponding assertion for Verma modules is well-known. From the way it is
proved for Verma modules, it suffices to check that if µ′ is strongly linked to dχ then

(a) There is a unique χ′ strongly linked to χ with dχ′ = µ′.
(b) Any g-map Ver(dχ′)→ Ver(dχ) is in fact T -equivariant, that is, is a mapM(χ′)→

M(χ).
(b)’ Any g-map Ver(dχ)∨ → Ver(dχ′)∨ is in fact T -equivariant, that is, is a map

M(χ)∨ →M(χ′)∨.

To prove (a), observe that if we write dγ := µ′ − dχ, then we know that dγ is integral
hence is the derivative of an algebraic character γ. Thus χ′ := γ ·χ is the desired character.

The point (b) will follow if we prove that T acts via χ′ on any highest weight vector v
of M(χ) with weight dχ′. But we know that v is of the form X ·vχ for some X ∈ U(n−) of
weight dγ = dχ′− dχ for the adjoint action of t. Such an X is also a γ-eigenvector for the
adjoint action of T on U(n−). It follows that X · vχ is an eigenvector for T with weight
γ · χ = χ′.

A dual argument proves (b)’.

We now derive another description of M(χ)∨. It is well-known but we could not find a
good reference. We define Cpol(N,Lχ) to be the space of Lχ-valued polynomial functions on
N . It carries a natural structure of B-module as explained after Lemma 2.5.3 in [Eme13].
It carries also a natural g-action defined as follows: any f ∈ Cpol(N,Lχ) may be extended
to a locally analytic function on the big cell B−N by putting f̃(b−n) := χ(b−)f(n). Since
B−N is open in G we can make X ∈ g act by left invariant derivation on f , that is
Xf := ∂X f̃|N . We then have a unique (g, B)-equivariant map βχ : M(χ) → Cpol(N,Lχ)
which takes 1⊗ 1 to the constant function with value 1.

Lemma II.3.14. There is a (g, B)-equivariant isomorphism Cpol(N,Lχ) ' M(χ)∨ that
carries the map βχ to αχ up to a scalar.

Proof. Emerton constructs an isomorphism of vector spaces in (2.5.7) of [Eme13]. The
T -equivariance of this map is clear from the definitions. We note that Emerton defines the
g-action on Cpol(N,Lχ) via this isomorphism. It follows from Lemma 2.5.24 of [Eme13]
that his action coincides with the one we have defined above. The remaining assertion
follows from the unicity of αχ.

Proof of the adjunction formula. Let us now start the proof of the adjunction formula.
We consider the following commutative diagram:
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HomG(IndGB−(χδ−1), Ĥ0(Kp)λL,an)
(1)

//

' (a)
��

HomT (χ, JB(Ĥ0(Kp)λL,an))

' (b)
��

Hom(g,B)(Cpol(N,Lχ)⊗ Csmc (N,Lδ−1), Ĥ0(Kp)λL,an)
(2)
//

= (c)
��

Hom(g,B)(U(g)⊗U(b) χ⊗ Csmc (N,Lδ−1), Ĥ0(Kp)λL,an)

= (d)
��

Hom(g,B)(M(χ)∨ ⊗ Csmc (N,Lδ−1), Ĥ0(Kp)λL,an)
(3)

//

(3a)
��

Hom(g,B)(M(χ)⊗ Csmc (N,Lδ−1), Ĥ0(Kp)λL,an)

Hom(g,B)(L(χ)⊗ Csmc (N,Lδ−1), Ĥ0(Kp)λL,an)

(3b)
22

Let us now explain all the identifications and maps. We want to prove that (1) is an
isomorphism.

We denote by Clp
c (NΣp , Lχ) the space of compactly supported locally Lχ-valued polyno-

mial functions onNΣp . Recall that Clpc (N,Lχδ−1) = Cpol(N,Lχ)⊗Csmc (N,Lδ−1). Because of
the natural open immersion NΣp ↪→ GΣp/B

−
Σp , we can regard Clp

c (NΣp , Lχ) as a (g, BΣp)-

invariant subspace of IndGΣp
B−Σp

(χ)an. The inclusion of Csm
c (NΣp , Lχ) in Clp

c (NΣp , Lχ) thus

induces a (g, BΣp)-equivariant map

U(g)⊗U(b) Csm
c (NΣp , Lχ)→ Clp

c (NΣp , Lχ) (II.9)

For (a) let IndGB−(χδ−1)(N) denote the subspace of IndGB−(χδ−1) of functions supported
on N . It generates IndGB−(χδ−1) as a G-representation (Lemma 2.4.13 of [Eme13]). More-
over, Clpc (N,Lχδ−1) is dense in IndGB−(χδ−1)(N) as a (g, B)-representation (Proposition
2.7.9 in [Eme13]). Those are basic ingredients to prove the following isomorphisms:

HomG(IndGB−(χδ−1), Ĥ0(Kp)λL,an) ' Hom(g,B)(IndGB−(χδ−1)(N), Ĥ0(Kp)λL,an) '

' Hom(g,B)(Clpc (N,Lχδ−1), Ĥ0(Kp)λL,an)

which are proved as Theorems 4.1.5 and 4.2.18 in [Eme13].

The isomorphism (b) results from Theorem 3.5.6 in [Eme06a] (see also (0.17) in
[Eme13]). The identification (c) is Lemma II.3.14.

The map (2) is induced by II.9. It comes from a natural map of (g, B)-modules:

U(g)⊗U(b) Lχ → Cpol(N,Lχ)

which arises from the map
αχ : M(χ)→M(χ)∨

which we have introduced before the proof. Hence it factors through

M(χ) � L(χ) ↪→M(χ)∨

which gives maps (3a) and (3b).
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Lemma II.3.15. If L(µ) 6= L(χ) is a constituent of M(χ) or M(χ)∨ then

Hom(g,B)(L(µ)⊗ Csmc (N,Lδ−1), Ĥ0(Kp)λL,an) = 0

Proof. We have
Hom(g,B)(L(µ)⊗ Csmc (N,Lδ−1), Ĥ0(Kp)λL,an) ⊂

⊂ Hom(g,B)(M(µ)⊗ Csmc (N,Lδ−1), Ĥ0(Kp)λL,an) =

= HomB(Csmc (N,Lµδ−1), Ĥ0(Kp)λL,an) ' Ĥ0(Kp)N
0,T+=µ,λ

L,an

where the last isomorphism is given by evaluating homomorphisms on the characteristic
function 1N0 ∈ Csmc (N,Lµδ−1) (we remark that we normalize the action of T+ as Emerton
in Definition 3.4.2 in [Eme06a] and hence we get a twist by δ). We conclude by remarking
that

Ĥ0(Kp)N
0,T+=µ,λ

L,an = 0

by the assumption that (χ, λ) is not bad.

Corollary II.3.16. The map (3b) is an isomorphism and the map (3a) is injective.

Proof. It follows from Lemma II.3.15 and the structure of Verma modules which we have
recalled above.

To finish the proof of the adjunction formula we need to prove that (3a) is surjective.

Let us denote by pλ the ideal of the Hecke algebra H(Kp)nr corresponding to λ and
by p+

id the ideal of L[T+] corresponding to the character id. We start with an auxilary
lemma.

Lemma II.3.17. Let V,W be (g, B)-modules. We have

Hom(g,B)(V ⊗ Csmc (N,Lδ−1),W ) = Homg(V,W )N0,T+=id

We remark again that the twist by δ in the T+-action appears because we use the
normalization of Emerton from Definition 3.4.2 in [Eme06a] in defining the action of the
monoid T+ on theN0-invariants. If we were to make T+ act by correspondences [N0t+N0],
then we would have T+ = δ−1 on the right.

Proof. Both sides are isomorphic to HomB(Csmc (N,Lδ−1),Homg(V,W )), where we pass to
the right-hand side by evaluation at the characteristic function 1N0 .

We consider the exact sequence

0→ Homg(M(χ)∨/L(χ), Ĥ0(Kp)L,an)N0 →

→ Homg(M(χ)∨, Ĥ0(Kp)L,an)N0 →

→ Homg(L(χ), Ĥ0(Kp)L,an)N0 →

→ Ext1
g(M(χ)∨/L(χ), Ĥ0(Kp)L,an)N0

We want to prove that

Homg(M(χ)∨, Ĥ0(Kp)L,an)N0 [pλ, p+
id] ' Homg(L(χ), Ĥ0(Kp)L,an)N0 [pλ, p+

id]
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Because of the exact sequence above it is enough to show

Homg(M(χ)∨/L(χ), Ĥ0(Kp)L,an)N0

pλ,p
+
id

= 0

Ext1
g(M(χ)∨/L(χ), Ĥ0(Kp)L,an)N0

pλ,p
+
id

= 0

where the subscript pλ, p
+
id denotes the localisation at respective ideals. By devissage, it

suffices to show that

Lemma II.3.18. For µ strongly linked to χ we have

(a) Homg(L(µ), Ĥ0(Kp)λL,an)N0

pλ,p
+
id

= 0

(b) Ext1
g(L(µ), Ĥ0(Kp)L,an)N0

pλ,p
+
id

= 0

Proof. (a) We can replace L(µ) by M(µ). Thus it is enough to prove that

Homg(M(µ), Ĥ0(Kp)L,an)N0

pλ,p
+
id

= 0

But Homg(M(µ), Ĥ0(Kp)L,an)N0 = Ĥ0(Kp)N
0,t=µ

L,an . It follows from Lemma 2.3.4(ii) of
[Eme06a] that H(Kp)nr and T+ act by compact operators on Ĥ0(Kp)N

0,t=µ
L,an because this

space is of compact type. Hence the localisation (Ĥ0(Kp)N
0,t=µ

L,an )pλ,p+
id
is finite dimensional.

Therefore
Homg(M(µ), Ĥ0(Kp)L,an)N0

pλ,p
+
id

is of pλ-torsion and of p+
id-torsion. Hence if this space is non-zero then also

Homg(M(µ), Ĥ0(Kp)L,an)N0 [pλ, p+
id] = Ĥ0(Kp)N

0,T+=µ,λ
L,an

is non-zero which would contradict our assumption that (χ, λ) is not bad. Hence we
conclude.

(b) Let us prove firstly that Ext1
g(L(µ), Ĥ0(Kp)L,an)N0

pλ,p
+
id

is of pλ-torsion and of p+
id-

torsion. By the exact sequence

Homg(ker(M(µ)→ L(µ)), Ĥ0(Kp)L,an)N0 → Ext1
g(L(µ), Ĥ0(Kp)L,an)N0 →

→ Ext1
g(M(µ), Ĥ0(Kp)L,an)N0

and (a) it suffices to prove that Ext1
g(M(µ), Ĥ0(Kp)L,an)N0

pλ,p
+
id

= 0. We have

Ext1
g(M(µ), Ĥ0(Kp)L,an) = Ext1

b(µ, Ĥ0(Kp)L,an) = H1(b, Ĥ0(Kp)L,an(−µ))

We know that Ĥ0(Kp)L,an is injective as a G(Zp)-module. The standard argument is given
for example in the proof of Proposition 4.9 in [Cho13], from which we infer that in fact
Ĥ0(Kp)L,an ' Cla(G(Zp), L)⊕r for some integer r > 0 as G(Zp)-modules. Now, observe
that Cla(G(Zp), L) is b-acyclic and invariant under µ-torsion (it is stated in the proof of
Proposition 5.1.2 in [BE10], compare also with the proof of Proposition 3.1 in [ST05],
where g-acyclicity is proved), hence

H1(b, Ĥ0(Kp)L,an(−µ)) = 0
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This proves the claim. Now to prove (b) completely, remark that we get the surjection

Homg(ker(M(µ)→ L(µ)), Ĥ0(Kp)L,an)N0

pλ,p
+
id

� Ext1
g(L(µ), Ĥ0(Kp)L,an)N0

pλ,p
+
id

hence it suffices to show that Homg(ker(M(µ) → L(µ)), Ĥ0(Kp)L,an)N0

pλ,p
+
id

vanishes. But
this follows from (a) by devissage.

This finishes the proof of the adjunction formula.

Due to various convenient normalizations we will now write points z = (χ, λ) ∈ SpecA
as pairs (ξ(13)δBΣp , λ) where ξ ∈ TΣp and ξ(13) is the usual twisting by the longest Weyl-
element (13):

(ξ1 ⊗ ξ2 ⊗ ξ3)(13) = ξ3 ⊗ ξ2 ⊗ ξ1

and δBΣp = (δBv)v∈Σp is the Σp-tuple of modulus characters. This allows us to pass
between Borel BΣp and its opposite B−Σp :

(IndGΣp
BΣp

ξ)an = (IndGΣp
B−Σp

χδ−1
BΣp

)an

We will use that tacitly in the rest of the text.
We now come back to the situation from Section 3.1. Recall that for v ∈ Σp, we have

associated to an automorphic representation π of weight k = (kv)v an upper-triangular
crystalline Galois representation ρπ,v with crystalline characters ψ1,v, ψ2,v, ψ3,v on the diag-
onal and Hodge-Tate weights h1,v < h2,v < h3,v. We have denoted by φψi,v the crystalline
eigenvalue of ψi,v and we have written ψi,v = z−hi,v nr(φψi,v). For each σv ∈ S3 we have
defined a smooth character

θnc,(σv)
v = (ψσv(1)z

hσv(1) ⊗ ψσv(2)z
hσv(2) ⊗ ψσv(3)z

hσv(3))(| · |2 ⊗ | · | ⊗ 1)

and a classical point on the eigenvariety for each σ = (σv)v∈Σp ∈ (S3)Σp given by

z(σ)
nc = (θnc,(σ)δk, λ)

In order to apply the theorem to the points z(σ)
nc we write them in the form z

(σ)
nc =

(χ(13)δBΣp , λ). We look at the refinements one place v ∈ Σp at a time. We regard three
cases as σv ∈ {(1)v, (12)v, (23)v}:

(1)v : (ψ1,v| · |2 ⊗ ψ2,v| · |z ⊗ ψ3,vz
2)v (II.10)

=
(
ψ3,vz

2| · |2 ⊗ ψ2,v| · |z ⊗ ψ1,v
)(13)

v
δBΣp

=
(
ψ3,vε

2 ⊗ ψ2,vε⊗ ψ1,v
)(13)

v
δBΣp

(12)v : (ψ2,v| · |2zh2,v−h1,v ⊗ ψ1,v| · |zh1,v−h2,v+1 ⊗ ψ3,vz
2)v

=
(
ψ3,v| · |2z2 ⊗ ψ1,v| · |zh1,v−h2,v+1 ⊗ ψ2,vz

h2,v−h1,v
)(13)

v
δBΣp

=
(
ψ3,vε

2 ⊗ ψ1,vεz
h1,v−h2,v ⊗ ψ2,vz

h2,v−h1,v
)(13)

v
δBΣp

(23)v : (ψ1,v| · |2 ⊗ ψ3,v| · |zh3,v−h2,v+1 ⊗ ψ2,vz
h2,v−h3,v+2)v

=
(
ψ2,v| · |2zh2,v−h3,v+2 ⊗ ψ3,v| · |zh3,v−h2,v+1 ⊗ ψ1,v

)(13)

v
δBΣp

=
(
ψ2,vε

2zh2,v−h3,v ⊗ ψ3,vεz
h3,v−h2,v ⊗ ψ1,v

)(13)

v
δBΣp
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We denote

χ(1)
v = ψ3,vε

2 ⊗ ψ2,vε⊗ ψ1,v

χ(12)
v = ψ3,vε

2 ⊗ ψ1,vεz
h1,v−h2,v ⊗ ψ2,vz

h2,v−h1,v

χ(23)
v = ψ2,vε

2zh2,v−h3,v ⊗ ψ3,vεz
h3,v−h2,v ⊗ ψ1,v

We could make a similar easy computation for any other σv ∈ S3, but explicitely we will
need only (1), (12), (23). Hence we could also define χ(σv)

v for any σv ∈ S3. We use it just
for the sake of a better exposition. For every σ = (σv)v ∈ (S3)Σp we put χ(σ) = (χ(σv)

v )v∈Σp
and we define a locally analytic representation

Ean(z(σ)
nc ) = (IndGΣp

BΣp
χ(σ))an (II.11)

associated to a point z(σ)
nc . Similarly we define a continuous representation

EC0(z(σ)
nc ) = (IndGΣp

BΣp
χ(σ))C0

associated to a point z(σ)
nc . Notice that if χ(σ) is a unitary character of GΣp then the

universal unitary completion of Ean(z(σ)
nc ) is EC0(z(σ)

nc ). Summarizing our results so far, we
get:

Corollary II.3.19. If z(σ)
nc is a simple, generic ordinary classical point such that ρ

z
(σ)
nc ,v

is totally indecomposable for all v ∈ Σp, then there exists a non-zero map

Ean(z(σ)
nc )→ Ĥ0(Kp)λL

Proof. By Corollary II.3.11 we know that z(σ)
nc is not bad, hence we get the desired map

by Theorem II.3.12.

Let us also define for each v ∈ Σp two characters

χ(12)
comp,v = ψ3,vε

2 ⊗ ψ1,vε⊗ ψ2,v

χ(23)
comp,v = ψ2,vε

2 ⊗ ψ3,vε⊗ ψ1,v

and then, for any σ = (σv)v∈Σp ∈ {(12), (23)}v∈Σp a character χ(σ)
comp = (χ(σv)

comp,v)v∈Σp .
Here the subscript "comp" stands for "companion", which comes from the proof of the
following result.

Corollary II.3.20. If z(σ)
nc is a simple, generic ordinary classical point such that ρ

z
(σ)
nc ,v

is totally indecomposable for all v ∈ Σp then

HomGΣp (IndGΣp
BΣp

(χ(σ)
comp)C0

, Ĥ0(Kp)λL) = 0

Proof. We remark that χ(σ)
comp is a refinement of a point x(σ) = (χ(σ)

comp, λ) ∈ SpecA which
is strongly linked to z(σ)

nc . As z(σ)
nc is not bad, x(σ) does not appear on the eigenvariety and

thus is also not bad. We conclude by the adjunction formula applied to x(σ).
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II.3.4 Unitary completions of locally analytic representations

We now relate our work to certain representations which arise in the work of Breuil-Herzig.
We will first describe a certain locally analytic representation of GL3(Qp) associated to a
totally indecomposable generic ordinary representation ρp by Breuil and Herzig. Then we
show that it arises as a GL3(Qp)-subrepresentation of a completed cohomology space.

For each simple root r for GL3(Qp), positive with respect to the upper triangular Borel
B(Qp), we get a Levi component Gr of a parabolic Pr such that r is the unique simple
positive root appearing in B(Qp) ∩Gr. For example,

B(Qp) ∩Ge1−e2 =

∗ ∗∗
∗

 ⊂ Ge1−e2 =

∗ ∗∗ ∗
∗

 ⊂ Pe1−e2 =

∗ ∗ ∗∗ ∗ ∗
∗

 .
Suppose that ρp is a generic ordinary, crystalline representation of GQp with Hodge-Tate
weights h1 < h2 < h3 and write

ρp ∼

ψ1 ∗ ∗
ψ2 ∗

ψ3


with ψi having weight hi.

We begin by describing the representation Π(ρp)ord constructed by Breuil and Herzig in
the totally indecomposable case. By [BH12, Proposition B.2], each simple root r = ei− ej
gives rise to a unique non-split extension

0→ IndGL2(Qp)
( ∗ ∗∗ )

(ψ2ε⊗ ψ1)C0 → Ee1−e2 → IndGL2(Qp)
( ∗ ∗∗ )

(ψ1ε⊗ ψ2)C0 → 0, (II.12)

0→ IndGL2(Qp)
( ∗ ∗∗ )

(ψ3ε
2 ⊗ ψ2ε)C

0 → Ee2−e3 → IndGL2(Qp)
( ∗ ∗∗ )

(ψ2ε
2 ⊗ ψ3ε)C

0 → 0. (II.13)

First define
Πnc(ρp) = IndGL3(Qp)

B(Qp) (ψ3ε
2 ⊗ ψ2ε⊗ ψ1)C0

.

and then define

Π(ρp)e1−e2 = IndGL3(Qp)
Pe1−e2

(Ee1−e2 ⊗ ψ3ε
2)C0

, and (II.14)

Π(ρp)e2−e3 = IndGL3(Qp)
Pe2−e3

(ψ1 ⊗ Ee2−e3)C0
.

By (II.12) and (II.13) we have two non-split extensions of GL3(Qp)-representations

0→ Πnc(ρp)→ Π(ρp)e1−e2 → IndGL3(Qp)
B(Qp) (ψ3ε

2 ⊗ ψ1ε⊗ ψ2)C0 → 0, and (II.15)

0→ Πnc(ρp)→ Π(ρp)e2−e3 → IndGL3(Qp)
B(Qp) (ψ2ε

2 ⊗ ψ3ε⊗ ψ1)C0 → 0.

Finally we define the amalgamated sum Π(ρp)ord = Π(ρp)e1−e2⊕Πnc(ρp) Π(ρp)e2−e3 . This is
the representation Π(ρp)ord of [BH12, §3] up to normalizations (see the remarks following
Conjecture II.3.23 below).

In order to proceed we have to obtain another description of Π(ρp)ord. We start with
a simple general lemma.

Lemma II.3.21. Let P ⊂ G be a parabolic subgroup of a p-adic reductive group G.
Let (Van, πan) be a locally analytic L-representation of P and let (V, π) be its universal
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completion, which we assume to be non-zero. Suppose also that we have a P -equivariant
injection Van ↪→ V (which is neccessarily dense). Then we have a dense P -equivariant
injection

IndGP (Van)an ↪→ IndGP (V )C0

Proof. Let f ∈ IndGP (V )C0 . We want to approximate it by functions in IndGP (Van)an.
So let us take any ε > 0. Remark that we have P\G ' P0\G0 where P0 ⊂ G0 are
respectively maximal compact subgroups of P,G. Let Ū be the opposite unipotent and
let H be any sufficiently small compact open subgroup of G. We have a decomposition
G0 =

∐
g0 P0 × (H ∩ Ū)× g0 into finitely many pieces. Let us choose an element v0 ∈ Van

such that for any h ∈ H ∩ Ū we have |f(hg0) − v0| < ε. This is possible by density
of Van in V and choosing H sufficiently small (H will depend on f). Then we define
fan(phg0) = πan(p)v0 for p ∈ P and h ∈ H ∩ Ū . We make a similar definition for other
pieces in the decomposition hence obtaining a function fan : G → Van. Observe that
because π is unitary, π is bounded on P and hence there exists supp∈P |π(p)| which is
finite. We have

|f(phg0)− fan(phg0)| = |π(p)| · |f(hg0)− v0| < ε · sup
p∈P
|π(p)|

which allow us to conclude as ε was arbitrary.

We return to the extension classes of (II.12) and (II.13). By [BE10, Théorème 2.2.2]
(see also [Eme06b, §6.3] but note that the Hodge-Tate weights of the reference(s) are the
negatives of ours) says each extension may be written explicitly as a universal unitary
completion

Ee1−e2 ' IndGL2(Qp)
( ∗ ∗∗ )

(ψ1εz
h1−h2 ⊗ ψ2z

h2−h1)an,∧ and (II.16)

Ee2−e3 ' IndGL2(Qp)
( ∗ ∗∗ )

(ψ2ε
2zh2−h3 ⊗ ψ3εz

h3−h2)an,∧.

Thus we obtain the description of the extensions (II.15).

Proposition II.3.22. We have

Π(ρp)e1−e2 ' IndGL3(Qp)
B(Qp) (ψ3ε

2 ⊗ ψ1εz
h1−h2 ⊗ ψ2z

h2−h1)an,∧ and

Π(ρp)e2−e3 ' IndGL3(Qp)
B(Qp) (ψ2ε

2zh2−h3 ⊗ ψ3εz
h3−h2 ⊗ ψ1)an,∧.

Proof. The proofs are symmetric so we only cover the first isomorphism. We write

I = IndGL3(Qp)
B(Qp) (ψ3ε

2 ⊗ ψ1εz
h1−h2 ⊗ ψ2z

h2−h1)an

' IndGL3(Qp)
Pe1−e2

(
ψ3ε

2 ⊗ IndGL2(Qp)
( ∗ ∗∗ )

(ψ1εz
h1−h2 ⊗ ψ2z

h2−h1)an
)an

,

the tensor representation in the second line being seen as a representation of Pe1−e2 via
inflation Pe1−e2 → Ge1−e2 . By (II.14), (II.16) and Lemma II.3.21 we see that there is a
dense inclusion I ↪→ Π(ρp)e1−e2 . This induces a non-zero map I∧ → Π(ρp)e1−e2 . Since
both representations are admissible, to show that it is an isomorphism we need only show
it is injective.

Since I is dense in Π(ρp)e1−e2 we can pull back the unit ball and obtain an open,
separated, GL3(Qp)-stable lattice Λ1 ⊂ I such that Π(ρp)e1−e2 ' lim←−n Λ1/p

nΛ1⊗Qp. Since
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I∧ 6= 0 we also obtain a minimal GL3(Qp)-stable lattice Λ0 such that I∧ ' lim←−n Λ0/p
nΛ0⊗

Qp. By minimiality Λ0 ⊂ Λ1; since each is separated we have

I∧ ' lim←−
n

Λ0/p
nΛ0 ⊗Zp Qp ↪→ lim←−

n

Λ1/p
nΛ1 ⊗Zp Qp ' Π(ρp)e1−e2 .

This completes the proof.

II.3.5 On a conjecture of Breuil and Herzig

We now go back to our global setting. We suppose that z = (χz, λz) ∈ X(L) is a generic
ordinary point such that ρz,v is totally indecomposable for each place v ∈ Σp. We define
a representation

Π(ρz,p)ord :=
⊗̂

v∈Σp
Π(ρz,v)ord

Note that this only depends on ρz, not on z itself (i.e. on λz, not χz). We use Ĥ0(Kp)λz ,ord
L

to denote the ordinary part of the GΣp-representation Ĥ0(Kp)λzL . Breuil and Herzig have
made the following conjecture on this subspace.

Conjecture II.3.23 ([BH12, Conjecture 4.2.2]). Suppose that z ∈ X(L) is a generic
ordinary point and ρz,v is totally indecomposable at each place v ∈ Σp. Then there exists
an integer d ≥ 1 and a GΣp-equivariant isomorphism(

Π(ρz,p)ord
)⊕d
' Ĥ0(Kp)λz ,ord

L .

Note that there are the following differences between our normalizations of those of
[BH12]. First, we have used the upper triangular Borels throughout. Second, the repre-
sentation defined in [BH12, §3], temporarily denoted by Π(ρp)ord,BH, differs from ours by
the equation

Π(ρp)ord,BH ⊗ ε2 ◦ det = Π(ρp)ord.

Thus the conjecture we have written is the same as [BH12, Conjecture 4.2.2]. We further
remark that the integer d should only depend on Kp and λz (e.g. because the right hand
side depends only on those things).

We cannot completely prove the conjecture of Breuil-Herzig but we do give the follow-
ing strong evidence.

Theorem II.3.24. Suppose that z ∈ Xcl(L) is a generic ordinary classical point and
ρz,v is totally indecomposable at each place v ∈ Σp. Then there exists an integer d ≥ 1,
depending only on Kp and λz, and a G-equivariant closed embedding(

Π(ρz,p)ord
)⊕d

↪→ Ĥ0(Kp)λz ,ord
L .

In order to prepare the proof we need an intermediate result, due to Chenevier, on
multiplicities in spaces of p-adic automorphic forms. Recall from Definition II.3.3 that an
element σ ∈ (S3)Σp is said to be simple if σv ∈ {1, (12), (23)} for all v ∈ Σp. We recall also
that by Proposition II.3.22 E∧an(z(σ)

nc ) is an extension of EC0(χ(σ)
comp) by EC0(z(1)

nc ).

Proposition II.3.25. Suppose that σ is simple. Then the natural map

Hom(EC0(z(1)
nc ), Ĥ0,λz

L )→ Hom(E∧an(z(σ)
nc ), Ĥ0,λz

L )

is an isomorphism.
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Proof. We first note that we have a GΣp-equivariant short exact sequence

0→ EC0(z(1)
nc )→ E∧an(z(σ)

nc )→ EC0(χ(σ)
comp)→ 0

and thus an exact sequence

0→ Hom(EC0(χ(σ)
comp), Ĥ0,λz

L )→ Hom(E∧an(z(σ)
nc ), Ĥ0,λz

L )→ Hom(EC0(z(1)
nc ), Ĥ0,λz

L ).

By Corollary II.3.20 the first space is actually zero. Thus it suffices to check that the
dimensions of the two spaces in the proposition are the same. Since z(σ)

nc is not bad for
each simple σ we can apply Theorem II.3.12. So we aim to show that

dim J
χ

(13)

z
(σ)
nc

δBΣp

BΣp
(Ĥ0(Kp)λzL,an) = dim J

χ
(13)

z
(1)
nc
δBΣp

BΣp
(Ĥ0(Kp)λzL,an) (II.17)

is independent of simple σ ∈ (S3)Σp .
Here is where we apply the results of Chenevier. By [Bre13, Proposition 7.2] the

dimensions (II.17) are the same as the dimensions of spaces of p-adic automorphic forms
defined in terms of locally analytic Iwahori principal series [Che11, §4]. Since σ is simple,
the points z(σ)

nc are all non-critical by Proposition II.3.4. Thus by [Che11, Proposition
4.2], every p-adic automorphic form with system of eigenvalues λz and refinement χ

z
(σ)
nc

is
actually classical: there must be a classical automorphic representation π as in (II.3) on
which Hnr(Kp) acts via λπ = λz and πΣp ⊂ IndGΣp

BΣp
θ
z

(σ)
nc

. Since z is generic ordinary, the
Iwahori invariants πIw

Σp contain each θ
z

(σ)
nc

with multiplicity one. Thus in the notation of
(II.3) we get

dim J
χ

(13)

z
(σ)
nc

δBΣp

BΣp
(Ĥ0(Kp)λzL,an) =

∑
λπ=λz

m(π) dim(πKp

f )

is independent of σ.

We are now in a position to prove Theorem II.3.24.

Proof of Theorem II.3.24. Observe that if σ is simple then E∧an(z(σ)
nc ) contains EC0(z(1)

nc ).
Thus we can denote by ⊕σE∧an(z(σ)

nc ) the amalgamated sum of all these representations
over EC0(z(1)

nc ). We have two observations. First, for any GL3(Qp)-representation M ,

Hom(⊕σE∧an(z(σ)
nc ),M) = ×Hom(EC0 (z(1)

nc ),M) Hom(E∧an(z(σ)
nc ),M). (II.18)

Second, we see by inspection that

⊕σ E∧an(z(σ)
nc ) ' Π(ρz,p)ord. (II.19)

To prove the theorem now, we take M = Ĥ0(Kp)λzL,an. We plug (II.19) into the left hand
side of (II.18) and we apply Proposition II.3.25 to compute the right hand side. Thus we
get

Hom(Π(ρz,p)ord, Ĥ0(Kp)λzL ) = Hom(EC0(z(1)
nc ), Ĥ0(Kp)λzL ) 6= 0.

Now notice that EC0(z(1)
nc ) is topologically irreducible and so any map EC0(z(1)

nc ) →
Ĥ0(Kp)λzL is necessarily a closed embedding. Since every map Π(ρz,p)ord → Ĥ0(Kp)λzL is
uniquely determined by its restriction to EC0(z(1)

nc ) we deduce that every map Π(ρz,p)ord →
Ĥ0(Kp)λzL is a closed embedding as well.





Chapter III

On mod p non-abelian Lubin-Tate
theory

III.1 Introduction
By the recent work of Emerton (see [Eme11a]) we know that the p-adic completed (resp.
mod p) cohomology of the tower of modular curves realizes the p-adic (resp. mod p) Lo-
cal Langlands correspondence. In this Chapter we will obtain an analogous but weaker
result for the mod p cohomology of the Lubin-Tate tower over Qp. In fact, we will analyse
both the cohomology with compact support and the cohomology without support of the
Lubin-Tate tower. Here are the two main results which we prove:

(1) In the first cohomology group H1
LT,F̄p

of the Lubin-Tate tower appears the mod p

local Langlands correspondence and the naive mod p Jacquet-Langlands correspondence,
meaning that there is an injection of representations

π ⊗ ρ̄ ↪→ H1
LT,F̄p

and σ⊗π⊗ρ̄ appears as a subquotient in H1
LT,F̄p

, where π is a supersingular representation
of GL2(Qp), ρ̄ is its associated local mod p Galois representation and σ is the naive mod
p Jacquet-Langlands correspondence (for details, see Section 8).

(2) The first cohomology group H1
LT,c,F̄p

with compact support of the Lubin-Tate tower
does not contain any supersingular representations. This suprising result shows that the
mod p situation is much different from its mod l analogue. It also permits us to show that
the mod p local Langlands correspondence appears in H1 of the ordinary locus - again a
fact which is different from the l-adic setting for supercuspidal representations.

Before sketching how we obtain the above results, let us outline the first main difference
with the non-abelian Lubin-Tate theory in the l-adic case. When l 6= p the comparison
between the Lubin-Tate tower and the modular curve tower is made via vanishing cycles.
For that, we need to know that the stalks of vanishing cycles gives the cohomology of
the Lubin-Tate tower, or in other words we need an analogue of the theorem proved by
Berkovich in [Ber96]. But when l = p, the statement does not hold anymore (see Remark
3.8.(iv) in [Ber96]) and hence we cannot imitate directly the arguments from the l-adic
theory.

To circumvent this difficulty, we work from the beginning at the rigid-analytic level and
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consider embeddings from the ordinary and the supersingular tubes into modular curves.
This gives two long exact sequences of cohomology, depending on whether we take compact
support or a support in the ordinary locus and we start our analysis by resuming facts
about the geometry of modular curves. We recall a decomposition of the ordinary locus,
which proves that its cohomology is induced from some proper parabolic subgroup of GL2.
We use this fact several times in order to have vanishing of the cohomology of ordinary
locus after localising at a supersingular representation π of GL2(Qp). We then recall
standard facts about admissible representations and review the functor of localisation at
π which comes out of the work of Paskunas.

We then turn to the analysis of the supersingular locus. In this context, naturally
appears a quaternion algebra D×/Q which is ramified exactly at p and ∞. We define the
local fundamental representation of Deligne in our setting (which appeared for the first
time in the letter of Deligne [Del73]) and we show a decomposition of the cohomology of
supersingular locus. At this point we will be able to show that H1 of the tower of modular
curves injects into H1 of the Lubin-Tate tower hence proving part of (1).

Having established this result, we start analysing mod p representations of the p-adic
quaternion algebra and define a candidate for the mod p Jacquet-Langlands correspon-
dence σm which we later show to appear in the cohomology. It will a priori depend on a
global input, namely a maximal ideal m of a Hecke algebra corresponding to some mod-
ular mod p Galois representation ρ̄, but we conjecture that it is independent of m. This
is reasonable as it would follow from the local-global compatibility part of the Buzzard-
Diamond-Jarvis conjecture. After further analysis of σm we are able to finish the proof of
(1).

Using similar techniques, we start analysing the cohomology with compact support of
the Lubin-Tate tower. By using the Hochschild-Serre spectral sequence, we are able to
reduce (2) to the question of whether supersingular Hecke modules of the mod p Hecke
algebra at the pro-p Iwahori level appear in the H1

c of the Lubin-Tate tower at the pro-p
Iwahori level. We solve this question by explicitely computing some cohomology groups.

While proving the above theorems, we will also prove that the first cohomology group
of the Lubin-Tate tower and the first cohomology group of the ordinary locus are non-
admissible smooth representations. In particular, they are much harder to describe than
their mod l analogues. Moreover our model for the mod p Jacquet-Langlands correspon-
dence σm (actually we propose three candidates for the correspondence which we discuss
in Section 7.4) is a representation of D×(Qp) of infinite length. This indicates that al-
ready for D×(Qp) the mod p Langlands correspondence is complicated (as in the work
of [BP12], representations in question are not of finite length). On the other hand, the
case of D×(Qp) is much simpler than that of GL2(F ) for F a finite extension of Qp, and
hence we might be able to describe σm precisely. Natural question in this discussion is the
local-global compatibility part of the Buzzard-Diamond-Jarvis conjecture (see Conjecture
4.7 in [BDJ10]) which says that we have an isomorphism

F[m] ' σm ⊗ πp(ρ̄)

where F denotes locally constant functions on D×(Q)\D×(Af ) with values in F̄p and πp(ρ̄)
is a representation of GL2(Apf ) associated to ρ̄ by the modified Langlands correspondence.

At the end, we remark that our arguments work well in the l 6= p setting and omit the
use of vanishing cycles. As some of our arguments are geometric, we can also get similar
results in the p-adic setting. We hope to return to this issue in our future work. Also, the
geometry of modular curves is very similar to the geometry of Shimura curves and hence
we hope that some of the reasonings in this Chapter will give an insight into the nature
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of the mod p local Langlands correspondence of GL2(F ) for F a finite extension of Qp.

III.2 Geometry of modular curves

Let X(Npm) be the Katz-Mazur compactification of the modular curve associated to the
moduli problem (Γ(pn),Γ1(N)) (see [KM85]) which is defined over Z[1/N, ζpn ], where ζpn
is a primitive pn-th root of unity, that is X(Npm) parametrizes (up to isomorphism) triples
(E, φ, α), where E is an elliptic curve, φ : (Z/pnZ)2 → E[pn] is a Drinfeld level structure
and α : Z/NZ→ E[N ] is a Γ1(N)-structure. We consider the integral model of it defined
over Znrp [ζpn ], where Znrp is the maximal unramified extension of Zp, which we will denote
also by X(Npm). Let us denote by X(Npm)an the analytification of X(Npm) which is a
Berkovich space.

Recall that there exists a reduction map π : X(Npm)an → X(Npm), where X(Npm)
is the special fiber of X(Npm). We define X(Npm)ss (resp. X(Npm)ord) to be the set
of supersingular (resp. ordinary) points in X(Npm). Define the tubes X(Npm)ss =
π−1(X(Npm)ss) and X(Npm)ord = π−1(X(Npm)ord) inside X(Npm)an of supersingular
and ordinary points respectively.

III.2.1 Two exact sequences

We know that X(Npm)ss is an open analytic subspace of X(Npm)an isomorphic to some
copies of Lubin-Tate spaces, where the number of copies is equal to the number of points in
X(Npm)ss (see section 3 of [Buz03]). We have a decomposition X(Npm)an = X(Npm)ss∪
X(Npm)ord and we put j : X(Npm)ss ↪→ X(Npm)an and i : X(Npm)ord → X(Npm)an.
We remark that j is an open immersion of Berkovich spaces. Let F be a sheaf in the étale
topoi of X(Npm)an. By the general formalism of six operations (due in this setting to
Berkovich, see [Ber93]) we have a short exact sequence:

0→ j!j
∗F → F → i∗i

∗F → 0

which gives a long exact sequence of étale cohomology groups:

...→ H0(X(Npm)ord, i∗F )→ H1
c (X(Npm)ss, F )→

→ H1(X(Npm)an, F )→ H1(X(Npm)ord, i∗F )→ ...

On the other hand, we can consider a similar exact sequence for the cohomology
without compact support, but instead considering support on the ordinary locus. This
results in the long exact sequence

...→ H1
Xord

(X(Npm)an, F )→ H1(X(Npm)an, F )→

→ H1(X(Npm)ss, i∗F )→ H2
Xord

(X(Npm)an, F )→ ...

where we have denoted by H1
Xord

(X(Npm)an, F ) the étale cohomology of X(Npm)an with
support on X(Npm)ord. Because of the vanishing of the cohomology with compact support
of the supersingular locus localised at π (see the explanation in the next sections), this
exact sequence will be of more importance to us later on. We will analyse those two exact
sequences simultanously.
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III.2.2 Decomposition of ordinary locus

Let us recall that we have the Weil pairing on elliptic curves

epm : E[pm]× E[pm]→ µpm

Denote by ζpm a pm-th primitive root of unity. For a ∈ (Z/pmZ)∗ we define a substack
X(Npm)a of X(Npm) as the moduli problem which classifies elliptic curves E with level
structures (φ, α) such that epm(φ( 1

0 ), φ( 0
1 )) = ζapm . This moduli problem is representable

by a scheme over Znrp [ζpm ] (see chapter 9 of [KM85]). Moreover the coproduct
∐
aX(Npm)a

is a regular model of X(Npm) over Znrp [ζpm ].
Let us denote by X(Npm)a,ord the ordinary locus of the reduction of X(Npm)a. We

recall (see for example chapter 13 of [KM85]) that the set of irreducible components of
X(Npm)ord consists of smooth curves Ca,b(Npm) defined on points by:

Ca,b(Npm)(S) = {(E, φ, α) ∈ X(Npm)a,ord(S) | epm(φ( 1
0 ), φ( 0

1 )) = ζapm and Kerφ = b}

where a ∈ (Z/pmZ)∗ and b ∈ P1(Z/pmZ) is regarded as a line in Z/pmZ × Z/pmZ. We
observe that ζapm = 1 modulo p.

We are interested in lifting Ca,b(Npm) to characteristic zero and so we put

Xa,b(Npm) = π−1(Ca,b(Npm))

Hence {Xa,b(Npm)} for a ∈ (Z/pmZ)∗, b ∈ P1(Z/pmZ) form a decomposition of the
ordinary locus X(Npm)ord because different Ca,b(Npm) intersect only at supersingular
points. The spaces Xa,b(Npm) may be regarded as analytifications of Igusa curves. For
a detailed discussion, see [Col05]. We do not determine here whether Xa,b(Npm) are
precisely the connected components of X(Npm)ord. We remark also that one can give a
moduli description of each Xa,b(Npm).

There is an action of GL2(Z/pmZ) on X(Npm)an which is given on points by:

(E, φ, α) · g = (E, φ ◦ g, α)

for g ∈ GL2(Z/pmZ). Observe that if epm(φ( 1
0 ), φ( 0

1 )) = ζapm , then epm((φ ◦ g)( 1
0 ), (φ ◦

g)( 0
1 )) = ζa·detg

pm for g ∈ GL2(Z/pmZ) and so g induces an isomorphism between Xa,b(Npm)
and Xa·detg,g−1·b(Npm).

For b ∈ P1(Z/pmZ) there is a Borel subgroup Bm(b) in GL2(Z/pmZ) which fixes b
and hence the Borel subgroup Bm(b)+ = Bm(b) ∩ SL2(Z/pmZ) in SL2(Z/pmZ) stabilises
Xa,b(Npm).

Let b =∞ = ( 1
0 ) ∈ P1(Z/pmZ). By the above considerations we have

H i(X(Npm)ord, i∗F ) =
⊕
a,b

H i(Xa,b(Npm), (i∗F )|Xa,b(Npm)) '

' IndGL2(Z/pmZ)
Bm(∞)

(⊕
a

H i(Xa,∞(Npm), (i∗F )|Xa,∞))
)

and also

H1
Xord

(X(Npm)an, F ) ' IndGL2(Z/pmZ)
Bm(∞)

(⊕
a

H1
Xa,∞(Npm)(X(Npm)an, F )

)

Those results will be extremely useful for us later on, when we introduce the localisation
at a given supersingular representation.
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III.2.3 Supersingular points

Let us denote by D the quaternion algebra over Q which is ramified precisely at p and
at ∞. We recall the description of supersingular points X(Npm)ss which has appeared
in [Del73] and then was explained in [Car86], sections 9.4 and 10.4. Fix a supersingular
elliptic curve E over Fp and a two-dimensional vector space V over Qp. Let det(E) = Z
be the determinant of E. Denote by W (F̄p/Fp) the Weil group of Fp and put

∆ =
(
W (F̄p/Fp)× Isom(det(E)⊗Z Qp(1),∧2V )

)
/∼

where ∼ is defined by (σ, β) ∼ (σ Frobk, p−kβ) for k ∈ Z, where Frob : x 7→ xp is a
Frobenius map. We define Km to be the kernel of D×(Zp) → D×(Z/pmZ) and we let
K(N) = {( a bc d ) ∈ GL2(Z) | a ≡ 1 mod N and c ≡ 0 mod N}, viewed as a subgroup of
GL2(Apf ) by the diagonal embedding. Then:

X(Npm)ss = ∆/Km ×D×(Q) GL2(Apf )/K(N)

Every δ ∈ ∆/Km furnishes a supersingular elliptic curve E(δ), so that for every δ ∈ ∆ we
can consider the Lubin-Tate tower LTδ = lim←−m LTδ(p

m), which is the generic fiber of the
deformation space of the formal group attached to E(δ) and where LTδ(pm) denotes the
generic fiber of the deformation space of formal groups with pm-level structure (see [Dat12]
for details on the Lubin-Tate tower). Let us denote by E(δ) the universal formal group
deforming the formal group attached to E(δ) and let E(∆) =

∐
δ∈∆ E(δ). By 9.4 of [Car86],

the universal formal group over lim←−N,pm X(Npm)ss is isomorphic to E(∆)×D×(Q) GL2(Apf )
and hence we conclude that

lim←−
Npm

X(Npm)ss ' LT∆ ×D×(Q) GL2(Apf )

where LT∆ =
∐
δ∈∆ LTδ. We also get a description at a finite level

X(Npm)ss ' LT∆/Km ×D×(Q) GL2(Apf )/K(N)

where LT∆/Km =
∐
δ∈∆/Km LTδ(p

m).
These results will allow us later on to define the local fundamental representation and

analyze the action of the quaternion algebra D×.

III.3 Admissibility of cohomology groups
In this section we will recall the notion of admissibility in the context of mod p represen-
tations. It will be crucial in our study of cohomology.

III.3.1 General facts and definitions

We start with general facts about admissible representations. In our definitions, we will
follow [Eme10]. Let k be a field of characteristic p and let G be a connected reductive
group over Qp.

Definition III.3.1. Let V be a representation of G over k. A vector v ∈ V is smooth if
v is fixed by some open subgroup of G. Let Vsm denote the subset of smooth vectors of V .
We say that a G-representation V over k is smooth if V = Vsm.

A smooth G-representation V over k is admissible if V H is finitely generated over k
for every open compact subgroup H of G.
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Proposition III.3.2. The category of admissible k-representations is abelian.

Proof. This category is (anti-)equivalent to the category of finitely generated augmented
modules over certain completed group rings. See Proposition 2.2.13 and 2.4.11 in [Eme10].

Now, we will prove an analogue of Lemma 13.2.3 from [Boy99] in the l = p setting. We
will later apply this lemma to the cohomology of the ordinary locus to force its vanishing
after localisation at a supersingular representation of GL2(Qp).

Lemma III.3.3. For any smooth admissible representation (π, V ) of the parabolic sub-
group P ⊂ G over k, the unipotent radical U of P acts trivially on V .

Proof. Let L be a Levi subgroup of P , so that P = LU . Let v ∈ V and let KP = KLKU

be a compact open subgroup of P such that v ∈ V KP . We choose an element z in the
centre of L such that:

z−nKP z
n ⊂ ... ⊂ z−1KP z ⊂ KP ⊂ zKP z

−1 ⊂ ... ⊂ znKP z
−n ⊂ ...

and
⋃
n≥0 z

nKP z
−n = KLU . For every n and m, modules V z−nKP z

n and V z−mKP z
m are

of the same length as they are isomorphic via π(zn−m) and hence we have not only an
isomorphism but an equality V z−nKP z

n = V z−mKP z
m . Thus for every x ∈ V KP we have

x ∈ V KP = V z−nKP z
n = V KLU which is contained in V U .

We also record the following result of Emerton for the future use.

Lemma III.3.4. Let V = IndGP W be a parabolic induction. If V is a smooth admissible
representation of G over k, then W is a smooth admissible representation of P over k.

Proof. This follows from Theorem 4.4.6 in [Eme10].

III.3.2 Cohomology and admissibility

In [Eme06c], Emerton has introduced the completed cohomology, which plays a crucial
role in the p-adic Langlands program. The most important thing for us right now is
the fact that those cohomology groups for modular curves are admissible as GL2(Qp)-
representations. We have

Proposition III.3.5. The GL2(Qp)-representation

Ĥ1(X(N), F̄p) = lim−→
m

H1(X(Npm)an, F̄p)

is admissible.

Proof. This is Theorem 2.1.5 of [Eme06c] (see also Theorem 1.16 in [CE12]).

By formal properties of the category of admissible representations, which form a Serre
subcategory of the category of smooth representations (see Proposition 2.2.13 in [Eme10]),
the above result permits us to deduce admissibility for other cohomology groups which are
of interest to us. Let us remark that we can define also the cohomology of the Lubin-Tate
tower with compact support:
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Remark III.3.6. A priori, cohomology with compact support is a covariant functor. But
using the adjunction map

Λ→ π∗π
∗Λ ' π!π

!Λ

where Λ is a constant sheaf and π : X(Npm+1)ss → X(Npm)ss is finite (hence π∗ = π!) and
étale (hence π! = π∗) by the properties of Lubin-Tate tower, we get maps H i

c(X(Npm)ss,Λ)→
H i
c(X(Npm+1)ss,Λ) compatible with H i(X(Npm)an,Λ)→ H i(X(Npm+1)ss,Λ).

We start firstly by analysing cohomology groups which appear in the exact sequence
for the cohomology with compact support. We have

Proposition III.3.7. The GL2(Qp)-representation

Ĥ0(X(N)ord, F̄p) = lim−→
m

H0(X(Npm)ord, F̄p)

is admissible.

Proof. The number of connected components of X(Npm)ord is finite and let d(Npm) be
their number. For s > 0, we have

H0(X(Npm)ord, F̄p) = (F̄p)d(Npm)

hence lim−→m
H0(X(Npm)ord, F̄p) is admissible.

We deduce

Proposition III.3.8. The GL2(Qp)-representation

Ĥ1
c (X(N)ss, F̄p) = lim−→

m

H1
c (X(Npm)ss, F̄p)

is admissible.

Proof. We consider the exact sequence from 2.1:

...→ Ĥ0(X(N)ord, F̄p)→ Ĥ1
c (X(N)ss, F̄p)→ Ĥ1(X(N)an, F̄p)→ Ĥ1(X(N)ord, F̄p)→ ...

and we conclude using the fact that admissible representations form a Serre subcategory
of smooth representations and the propositions proved above.

We remark that the cohomology with compact support of the Lubin-Tate tower is
much easier to work with than the cohomology without the support. This is because the
latter will turn out to be non-admissible.

We finish this section with the following proposition

Proposition III.3.9. The GL2(Qp)-representation

Ĥ1
Xord

(X(N), F̄p) = lim−→
m

H1
Xord

(X(Npm)an, F̄p)

is admissible.

Proof. This follows from the exact sequence (we use the notations from the previous
section)

H0(X(Npm)ss, F̄p)→ H1
Xord

(X(Npm)an, F̄p)→ H1(X(Npm)an, F̄p)

and Proposition 3.5.
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III.4 Supersingular representations
In this section we recall results on the structure of admissible representations and we
apply them to the exact sequence of cohomology groups that we have introduced before,
getting the first comparison between the cohomology of the Lubin-Tate tower and the
cohomology of the tower of modular curves. We will start with a reminder on the mod p
local Langlands correspondence. The reader should consult [Ber11] for references to proofs
of cited facts.

III.4.1 Mod p local Langlands correspondence

Let ωn be the fundamental character of Serre of level n which is defined on inertia group I
via σ 7→ σ(p1/pn−1 )

p1/pn−1 . Let ω be the mod p cyclotomic character. For h ∈ N, we write Ind ωhn

for the unique semisimple F̄p-representation of GQp which has determinant ωh and whose
restriction to I is isomorphic to ωhn ⊕ ωphn ⊕ ... ⊕ ωp

n−1h
n . If χ : GQp → k× is a character,

we will denote by ρ(r, χ) the representation Ind(ωr+1
2 )⊗ χ which is absolutely irreducible

if r ∈ {0, ..., p− 1}. In fact, any absolutely irreducible representation of GQp of dimension
2 is isomorphic to some ρ(r, χ) for r ∈ {0, ..., p − 1}. We remark that Ind ωr+1

2 is not
isomorphic to the induced representation IndGQp

GQ
p2
ωr+1

2 , because of the condition which we

put on the determinant. In fact, computing the determinant of IndGQp
GQ

p2
ωr+1

2 , one sees
that

Ind ωr+1
2 = IndGQp

GQ
p2

(ωr+1
2 · sgn)

where sgn is the F̄p-character of GQp2 which factors through F×p2×Z and which is trivial on
F×p2 and takes the Frobenius of GQp2 to −1 in Z (we have to make a choice of a uniformiser
to have the map GQp2 � F×p2 × Z, but in this context it suffices to take p).

On the GL2-side, one considers representations Symr k2 inflated to GL2(Zp) and then
extended to GL2(Zp)Q×p by making p acts by identity. We then consider the induced
representation

IndGL2(Qp)
GL2(Zp)Q×p

Symr k2

One can show that the endomorphism ring (a Hecke algebra) Endk[GL2(Qp)](IndGL2(Qp)
GL2(Zp)Q×p

Symr k2)
is isomorphic to k[T ], where T corresponds to the double class GL2(Zp)Q×p ( p 0

0 1 ) GL2(Zp)Q×p .
For a character χ : GQp → k× and λ ∈ k. we introduce representations:

π(r, λ, χ) =
IndGL2(Qp)

GL2(Zp)Q×p
Symr k2

T − λ
⊗ (χ ◦ det)

For r ∈ {0, ..., p− 1} such that (r, λ) 6∈ {(0,±1), (p− 1,±1)}, the representation π(r, λ, χ)
is irreducible. One proves that χ◦det, Sp⊗(χ◦det) (Sp is the special representation which
we do not define here) and π(r, λ, χ) for r ∈ {0, ..., p−1} and (r, λ) 6∈ {(0,±1), (p−1,±1)}
are all the smooth irreducible representations of GL2(Qp).

This explicit description gives a mod p correspondence by associating ρ(r, χ) to π(r, 0, χ).

III.4.2 Supersingular representations

Let us a fix a supersingular representation π of GL2(Qp) on a F̄p-vector space with a
central character ξ. Recall the following result of Paskunas:
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Proposition III.4.1. Let τ be an irreducible smooth representation of GL2(Qp) admitting
a central character. If Ext1

GL2(Qp)(π, τ) 6= 0 then τ ' π.

Proof. See [Pas10] and [Pas11] for the case p = 2.

This result permits us to conclude that the GL2(Qp)-block of any supersingular rep-
resentation consists of one element - the supersingular representation itself. Here, by a
GL2(Qp)-block we mean an equivalence class for a relation defined as follows. We write
π ∼ τ if there exists a sequence of irreducible smooth admissible F̄p-representations of
GL2(Qp): π0 = π, π1, ..., πn = τ such that for each i one of the following conditions holds:

1) πi ' πi+1,
2) Ext1

GL2(Qp)(πi, πi+1) 6= 0,
3) Ext1

GL2(Qp)(πi+1, πi) 6= 0.
One can find a description of all GL2(Qp)-blocks in [Pas11] or [Pas13]. The general

result of Gabriel on the block decomposition of locally finite categories gives:

Proposition III.4.2. We have a decomposition:

RepadmGL2(Qp),ξ(F̄p) = RepadmGL2(Qp),ξ(F̄p)(π) ⊕ RepadmGL2(Qp),ξ(F̄p)
(π)

where RepadmGL2(Qp),ξ(F̄p) is the (abelian) category of smooth admissible F̄p-representations
admitting a central character ξ, RepadmGL2(Qp),ξ(F̄p)(π) (resp. RepadmGL2(Qp),ξ(F̄p)(π)) is the
subcategory of it consisting of representations Π whose all the irreducible subquotients are
(resp. are not) isomorphic to π.

Proof. See Proposition 5.32 in [Pas13].

This result permit us to consider the localisation functor with respect to π

V 7→ V(π)

on the category of admissible representations such that all irreducible subquotients of V(π)
are isomorphic to the fixed π.

Remark III.4.3. We note that the condition on the existence of central characters is not
important. Central characters always exist by the work of Berger ([Ber12]) in the mod p
case.

III.4.3 Cohomology with compact support

We apply the localisation functor to the three admissible terms in the exact sequence
obtained from 2.1:

...→ Ĥ0(X(N)ord, F̄p)→ Ĥ1
c (X(N)ss, F̄p)→ Ĥ1(X(N)an, F̄p)→ Ĥ1(X(N)ord, F̄p)→ ...

getting the exact sequence

Ĥ0(X(N)ord, F̄p)(π) → Ĥ1
c (X(N)ss, F̄p)(π) → Ĥ1(X(N)an, F̄p)(π)

For a ∈ Z×p let us define in the light of 2.2

Ĥ1(Xa,∞(N), F̄p) = lim−→
m

H1(Xa,∞(Npm), F̄p)
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Recall now, that after 2.2, Ĥ0(X(N)ord, F̄p) is an admissible representation isomorphic to
the induced representation

IndGL2(Qp)
B∞(Qp)

(⊕
a

Ĥ0(Xa,∞(N), F̄p)
)

where B∞(Qp) is the Borel subgroup of upper triangular matrices in GL2(Qp), a goes
over Z×p and we mean by

⊕
a Ĥ

0(Xa,∞(N), F̄p) smooth functions on Z×p with values in⊕
a Ĥ

0(Xa,∞(N), F̄p). On this representation unipotent group acts trivially by lemma 3.3
(which we can use thanks to lemma 3.4) and hence we see that it is induced from the
tensor product of characters. This means that after localisation at π this representation
vanishes

IndGL2(Qp)
B∞(Qp)

(⊕
a

Ĥ0(Xa,∞(N), F̄p)
)

(π)
= 0

and we arrive at

Theorem III.4.4. We have an injection of representations

Ĥ1
c (X(N)ss, F̄p)(π) ↪→ Ĥ1(X(N), F̄p)(π)

By taking yet another direct limit, we define

Ĥ1
ss,c,F̄p = lim−→

N

Ĥ1
c (X(N)ss, F̄p)

Ĥ1
F̄p = lim−→

N

Ĥ1(X(N), F̄p)

Corollary III.4.5. We have an injection of representations

(Ĥ1
ss,c,F̄p)(π) ↪→ (Ĥ1

F̄p)(π)

We define also for a future use

Ĥ1
ord,F̄p = lim−→

N

lim−→
m

H1(X(Npm)ord, F̄p)

and for a ∈ Z×p
Ĥ1
a,∞,F̄p = lim−→

N

lim−→
m

H1(Xa,∞(Npm), F̄p)

III.4.4 Cohomology without support

We can apply similar reasoning as above to the situation without compact support. The
roles of the ordinary locus and the supersingular locus are interchanged. By using again the
decomposition of the ordinary locus and lemmas 3.3 and 3.4, we get that the localisation
of Ĥ1

Xord
vanishes

Ĥ1
Xord

(X(N), F̄p)(π) = 0

and hence we get

Theorem III.4.6. We have an injection of representations

(Ĥ1
F̄p)(π) ↪→ Ĥ1

ss,F̄p

where Ĥ1
ss,F̄p

is defined similarly as above.
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Later on, we will show that Ĥ1
ss,F̄p

is a non-admissible representation, and this is why
we cannot localise it at π. Let us finish by giving another definition for a future use (where
a ∈ Z×p )

Ĥ1
Xa,∞,F̄p = lim−→

N

lim−→
m

H1
Xa,∞(Npm)(X(Npm)an, F̄p)

III.5 New vectors

Because there does not exist at the moment the Colmez functor in the context of quaternion
algebras, which would be similar to the one considered for example in [Pas13], we are forced
to look for a global definition of the mod p Jacquet-Langlands correspondence. To do that,
we prove an analogue of a classical theorem of Casselman in the context of the modified
mod l Langlands correspondence of Emerton-Helm (see [EH11]), which amounts to the
statement that for any prime l 6= p, and for any local two-dimensional Galois representation
ρ of Gal(Q̄l/Ql), there exists a compact, open subgroup Kl ⊂ GL2(Zl) such that πl(ρ)Kl
has dimension 1, where πl(ρ) is the mod p representation of GL2(Ql) associated to ρ by
[EH11].

Let b be an ideal of Zp and put Γ0(b) = {( a bc d ) ∈ GL2(Zp)|c ≡ 0 mod b}. Let us recall
the classical result of Casselman (see [Cas73]):

Theorem III.5.1. Let π be an irreducible admissible infinite-dimensional representation
of GL2(Qp) on Q̄l-vector space and let ε be the central character of π. Let c(π) be the
conductor of π which is the largest ideal of Zp such that the space of vector v with π( a bc d )v =
ε(a)v, for all ( a bc d ) ∈ Γ0(c(π)) is not empty. Then this space has dimension one.

We will prove that the result holds also modulo p for the modified mod l Langlands
correspondence. For that we need to assume that our prime p is odd.

Theorem III.5.2. Let π = π(ρ) be the mod p admissible representation of GL2(Ql)
associated by the modified mod l Langlands correspondence to a Galois representation
ρ : GQl → GL2(F̄p). Then there exists an open, compact subgroup K of GL2(Ql) such that
dimF̄p π

K = 1.

Proof. We recall the results of [EH11] concerning the construction of the modified mod l
Langlands correspondence. By Proposition 5.2.1 of [EH11], the theorem is true when ρss
is not a twist of 1⊕|· |, by the reduction modulo p of the classical result of Casselman from
[Cas73], which in the l 6= p situation was proved by Vigneras in [Vig89b] (see Theorem 23
and Proposition 24). When this is not the case, we can suppose that in fact ρss = 1⊕ | · |
and we go by case-by-case analysis of the possible forms of π(ρ) as described in [EH11]
after Proposition 5.2.1 and in [Hel12]. The π(ρ)’s which appear are mostly extensions of
four kinds of representations (and some combinations of them): trivial representation 1,
| · | ◦ det, the Steinberg St, π(1) of Vigneras (see [Vig89b]).

1) Suppose 0 → π(1) → π(ρ) → 1 → 0. In this case l ≡ −1 mod p. Let Γ0(p) =
{( a bc d ) ∈ GL2(Zp)|c ≡ 0 mod p, a ≡ d ≡ 1 mod p}. Then we have a long exact sequence
associated with higher invariants by Γ0(p):

0→ π(ρ)Γ0(p) → 1→ R1π(1)Γ0(p)

as π(1)Γ0(p) = 0 by the Proposition 24 of [Vig89b]. We conclude by observing that
R1π(1)Γ0(p) = 0 because |Γ0(p)| = p∞ and l 6 ||Γ0(p)| by our assumption.
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2) In the same way we deal with the situation when π(ρ) is an extension of | · | ◦ det
by π(1) with the same assumption on l.

3) When l ≡ −1 mod p it is also possible to have 0→ π(1)→ π(ρ)→ 1⊕|·|◦det→ 0.
Look at GL2(Zp)-invariants. The associated long exact sequence is

0→ π(ρ)GL2(Zp) → (1⊕ | · | ◦ det)GL2(Zp) → R1π(1)GL2(Zp) = Ext1
GL2(Fp)(1, π(1)I+pM2(Zp))

Let us denote by E the extension of 1 by π(1) which we get from 0 → π(1) → π(ρ) →
1 ⊕ | · | ◦ det → 0. We remark that π(1)I+pM2(Zp) defines the same representation mod p
as the reduction of π(1). The last map in the above exact sequence is explicit

(1⊕ | · | ◦ det)GL2(Zp) → Ext1
GL2(Fp)(1, π(1)I+pM2(Zp))

(a, b) 7→ (a+ b)E
and we see that it gives a line in Ext1

GL2(Fp)(1, π(1)I+pM2(Zp)) and hence the kernel, i.e.
π(ρ)GL2(Zp), is one-dimensional as (1⊕ | · | ◦ det)GL2(Zp) has dimension two.

4) The last non-banal case with which we have to deal is the case when p is odd, l ≡ 1
mod p and we have an extension:

0→ St→ π(ρ)→ 1→ 0

In this case Ext1
GL2(Qp)(1,St) (here by St we mean in fact StI+pM2(Zp) but that also defines

the Steinberg representation mod p hence we use the same notation) is two-dimensional -
see Lemma 4.2 in [Hel12]. We look at the reduction map

Ext1
GL2(Qp)(1,St)→ Ext1

GL2(Fp)(1,St)

Let us denote by E the image of the class [π(ρ)] of π(ρ) in Ext1
GL2(Fp)(1, St) under the

above reduction. We have two cases to consider. Suppose firstly that E = 0. Then we
claim that K = GL2(Zp) works. Indeed we have in this case

0→ π(ρ)K → 1K → Ext1
K(1,St)

and as the image of 1K in Ext1
K(1,St) is E , we conclude by assumption.

Now let us suppose that E 6= 0. Then we claim that the Iwahori subgroup K = I
works. We have

0→ StK → π(ρ)K → 1K → Ext1
K(1, St)

The image of 1K in Ext1
K(1,St) is non-zero by assumption, because Ext1

GL2(Zp)(1, St) ↪→
Ext1

K(1, St). Hence π(ρ)K is isomorphic to StK which is of dimension one.
5) We remark that there is also the so-called banal case when l is not congruent

to ±1 modulo p. In this case, there are two situations to consider. In the first one
π(ρ) = St⊗| · | ◦det and we can take K = I, the Iwahori subgroup. In the second one π(ρ)
is the unique non-split extension of | · | ◦det by St⊗| · | ◦det. Because Ext1

GL2(Fp)(1,St) = 0
as we are in the banal case, we conclude as above that K = GL2(Zp) works.

III.6 The fundamental representation
Following the original Deligne’s approach to the non-abelian Lubin-Tate theory, we define
the local fundamental representation. Using it, we refine the Lubin-Tate side of the in-
jections we have considered. Then we recall Emerton’s results on the cohomology of the
tower of modular curves, yielding by a comparison an information on the local fundamental
representation. Our arguments are similar to those given in [Del73].
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III.6.1 Cohomology of the supersingular tube

We have introduced in section 2.3, the set ∆, spaces LT∆/Km =
∐
δ∈∆/Km LTδ and we

have obtained a description of the supersingular tube

X(Npm)ss ' LT∆/Km ×D×(Q) GL2(Apf )/K(N)

Definition III.6.1. Define the fundamental representation by

Ĥ1
LT,c,F̄p = lim−→

m

H1
c (LT∆/Km , F̄p)

Similarly we introduce the fundamental representation without support denoting it by
Ĥ1
LT,F̄p

.

From the description of supersingular points, we have

H1
c (X(Npm)ss, F̄p) = H1

c (LT∆/Km ×D×(Q) GL2(Apf )/K(N), F̄p) =

= {f : D×(Q)\D×(Af )/K(N)→ H1
c (LT∆/Km , F̄p)}

D×(Qp)

We take the direct limit:

lim−→
m

H1
c (X(Npm)ss, F̄p) ' {f : D×(Q)\D×(Af )/K(N)→ lim−→

m

H1
c (LT∆/Km , F̄p)}

D×(Qp)

Take the limit over N to obtain

Ĥ1
ss,c,F̄p ' {f : D×(Q)\D×(Af )→ Ĥ1

LT,c,F̄p}
D×(Qp) '

'
(
{f : D×(Q)\D×(Af )→ F̄p} ⊗F̄p Ĥ

1
LT,c,F̄p

)D×(Qp)

Let
F = {f : D×(Q)\D×(Af )→ F̄p}

where f are locally constant functions, then

Ĥ1
ss,c,F̄p '

(
F⊗F̄p Ĥ

1
LT,c,F̄p

)D×(Qp)
(III.1)

We get a similar result for the cohomology without support

Ĥ1
ss,F̄p '

(
F⊗F̄p Ĥ

1
LT,F̄p

)D×(Qp)

III.6.2 Emerton’s results

We recall Emerton’s results on the completed cohomology of modular curves. Remark
that we are using implicitly the comparison theorem for étale cohomology of a scheme and
its analytification which is proved in [Ber95].

Let us fix a finite set Σ = Σ0 ∪ {p}. Let KΣ =
∏
l 6∈ΣKl where Kl = GL2(Zl) and

choose an open, compact subgroup KΣ0 of
∏
l∈Σ0 GL2(Zl). Let ρ̄ : GQ → GL2(F̄p) be an

odd, irreducible, continuous representation unramified outside Σ. Remark that by Serre’s
conjecture (see [Kha06]) ρ̄ is modular. Let us denote by m the maximal ideal in the Hecke
algebra T(KΣ0) which corresponds to ρ̄. We write also ρ̄|GQp

= IndGQ
GQ

p2
α, where α can

be considered as a character of Q×p2 by the local class field theory. For the definitions, see
Section 5 of [Eme11a].
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Theorem III.6.2. Assuming that ρ̄ satisfies certain technical hypotheses (see below), we
have an isomorphism

Ĥ1
F̄p [m]KΣ ' π ⊗F̄p πΣ0(ρ̄)⊗F̄p ρ̄

where π is a representation of GL2(Qp) associated to ρ̄ by the mod p local Langlands
correspondence and πΣ0(ρ̄) is a representation GL2(AΣ0

f ) associated to ρ̄ by the modified
local Langlands correspondence mod l for l ∈ Σ0 (see [EH11]).

For the exact assumptions, see Proposition 6.1.20 in [Eme11a]. Those assumptions are
not important for our applications, as we can always find ρ̄ which satisfies them and which
at p is isomorphic to our fixed irreducible Galois representation ρ̄p (see below).

III.6.3 Comparison

We will use results of Emerton to describe a part of Ĥ1
ss,F̄p

. We start by comparing mod p
Hecke algebras for GL2 and for D×. On F, after taking KΣ-invariants, there is an action
of a Hecke algebra. For l 6∈ Σ, we have a Hecke operator Tl acting on functions of D×(Af )
by

Tl(f)(x) = f(xg) +
l−1∑
i=0

f(xgi)

where g = ( l 0
0 1 ) and gi = ( 1 0

i l ) are both considered as elements of D×(Af ) having 1 at
places different from l. Let us denote by TD(KΣ0) the Hecke algebra, which is the free O-
algebra spanned by the operators Tl and Sl for all l 6∈ Σ, where Sl = [KΣ0K

Σ( l 0
0 l )KΣ0K

Σ].
By the results of Serre (see letter to Tate from [Ser96]), systems of eigenvalues for (Tl) of
TD(KΣ0) on F are in bijection with systems of eigenvalues for (Tl) of T(KΣ0) coming from
mod p modular forms. This allows us to identify maximal ideals of TD(KΣ0) with those
of T(KΣ0) and in what follows we will make no distinction between them.

Let ρ̄p be the local Galois representation associated to a supersingular representation
π of GL2(Qp) by the mod p Langlands correspondence. We assume that there exists
a representation ρ̄ : GQ → GL2(F̄p) which is odd, irreducible, continuous, unramified
outside a finite set Σ = Σ0 ∪ {p}, and such that ρ̄|GQp

= ρ̄p. This is always the case by
the main result of [BG13]. See also the introduction to [Bre03] for a discussion (especially
Conjecture 1.5) of the reductions of Galois representations associated to modular forms.

Let us denote by m the maximal ideal in the Hecke algebra T(KΣ0) corresponding to
ρ̄. Results of Emerton apply to ρ̄ because we have assumed that ρ̄p is irreducible. We
denote by Km,Σ0 an open compact subgroup of

∏
l∈Σ0 GL2(Zl) for which πΣ0(ρ̄)Km,Σ0 is a

one-dimensional vector space (see section III.5). We put Km = Km,Σ0K
Σ and we define:

σm = F[m]Km

This is a representation of D×(Qp). We remark that Breuil and Diamond in [BD12] also
define a representation of D×(Qp) which serves as a model for a local representation which
should appear conjecturally at the place p in the local-global compatibility of the Buzzard-
Diamond-Jarvis conjecture (see the next section for a discussion). Their construction is
different from our and uses "‘types"’ instead of new vectors.

Let us look again at our cohomology groups. Taking Km-invariants, which commute
with D×(Qp)-invariants, we get

(
Ĥ1
ss,F̄p

)Km

'
(
FKm ⊗F̄p Ĥ

1
LT,F̄p

)D×(Qp)



III.6. The fundamental representation 71

Let us define the dual σ∨m = HomF̄p(σm, F̄p). It is not necesarily a smooth representation.
Taking [m]-part we get:

(
Ĥ1
ss,F̄p [m]

)Km

'
(
σm ⊗F̄p Ĥ

1
LT,F̄p

)D×(Qp)
=: Ĥ1

LT,F̄p [σ
∨
m]

Thus, by the results proven earlier, we have

π ⊗F̄p ρ̄ '
(
Ĥ1

F̄p [m]
)Km

(π)
↪→
(
Ĥ1
ss,F̄p [m]

)Km

' Ĥ1
LT,F̄p [σ

∨
m]

and we arrive at

Theorem III.6.3. We have a GL2(Qp)×GQp-equivariant injection:

π ⊗F̄p ρ̄ ↪→ Ĥ1
LT,F̄p [σ

∨
m]

We will strengthen this result after proving additional facts about σm. It is also possible
to obtain the analogous result in the p-adic setting. Details will appear elsewhere.

III.6.4 The mod p Jacquet-Langlands correspondence

We have defined above
σm = F[m]Km

This is a mod p representation of D×(Qp) which is one of our candidates for the mod
p Jacquet-Langlands correspondence we search for. We will analyse this representation
more carefully in the next section, getting a result about its socle. The question we do
not answer here is whether this local representation is independent of the Hecke ideal m
and if yes, how to construct it by local means. We make a natural conjecture

Conjecture III.6.4. Let m and m′ be two maximal ideals of the Hecke algebra, which
correspond to Galois representations ρ̄ and ρ̄′ such that ρ̄p ' ρ̄′p. Then we have a D×(Qp)-
equivariant isomorphism

σm ' σm′

This conjecture is natural in view of the fact that σm should play a role of the mod p
Jacquet-Langlands correspondence and it should depend only on a local data. In fact, this
conjecture follows from the local-global compatibility part of the Buzzard-Diamond-Jarvis
conjecture (see Conjecture 4.7 in [BDJ10])

Conjecture III.6.5. We have a D×(A)-equivariant isomorphism

F[m] ' σ ⊗ πp(ρ̄)

where σ is a D×(Qp)-representation which depends only on ρ̄p, where ρ̄ is the Galois
representation associated to m.

The conjecture of Buzzard-Diamond-Jarvis would be proved if one could show the
existence of an analogue of the Colmez functor in the context of quaternion algebras.
Then, the methods of Emerton from [Eme11a] could be applied to give a proof. We come
back to the discussion of the mod p Jacquet-Langlands correspondence at the end of the
next section.
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III.7 Representations of quaternion algebras: mod p theory

In this section we analyse more carefully mod p representations of quaternion algebras,
especially representations σm defined in the preceding section. We also define a naive mod
p Jacquet-Langlands correspondence.

III.7.1 Naive mod p Jacquet-Langlands correspondence

By the work of Vigneras (see [Vig89a]), we know that all irreducible representations of
D× are of dimension 1 or 2 and are either

1) a character of D×(Qp), or
2) are of the form IndD×O×DQ×

p2
α where α is a character of Q×p2 .

Let ρ̄p be the mod p 2-dimensional irreducible Galois representation which corresponds
to the supersingular representation π of GL2(Qp) by the mod p Local Langlands corre-
spondence. As we have mentioned earlier, it is of the form IndGQp

GQ
p2

(ωr2 · sgn)⊗ χ where χ
is a character and r ∈ {1, ..., p}.

Definition III.7.1. The naive mod p Jacquet-Langlands correspondence is

IndGQp
GQ

p2
(ωr2 · sgn)⊗ χ 7→ IndD×O×DQp2

(ωr2)⊗ χ

where ωr2 is treated as a character of Qp2 by the local class field theory and χ is considered
both as a character of GQp and D×(Qp). This gives a bijection between two-dimensional
representations of GQp and two-dimensional representations of D×(Qp). Similar corre-
spondence holds for characters.

We remark that one may also would like to call this the naive mod p Langlands
correspondence for D×(Qp). We get the Jacquet-Langlands correspondence in the usual
sense, when we compose it with the mod p local Langlands correspondence for GL2(Qp).

Let α : Qp2 → F̄×p be a character. We denote by ρ(α) the representation of GQp
obtained by the local class field theory and an induction. We denote by σ(α) the D×(Qp)-
representation IndD×O×DQp2

(α). We remark that we also could define the naive mod p Jacquet-
Langlands correspondence as

ρ(α) 7→ σ(α)

but we have chosen our normalisation with a twist by sgn to have the same condition on
determinants as for the classical l-adic Jacquet-Langlands correspondence.

III.7.2 Quaternionic forms

Let D be the quaternion algebra over Q, ramified at p and at ∞. Let K be a finite
extension of Qp with ring of integers O and a uniformiser $. Define

F = lim−→
K

H0(D×(Q)\D×(Af )/K, F̄p)

FO = lim−→
K

H0(D×(Q)\D×(Af )/K,O)

Define also FK = FO ⊗O K. We can make similar definitions for other Fp or Zp-algebras
(for example for finite extensions of Fp or for Z̄p in FZ̄p which we will use in the text).
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Recall that we have fixed a finite set Σ = Σ0 ∪ {p} and chosen an open, compact
subgroup KΣ0 of

∏
l∈Σ0 GL2(Zl). On each of the above spaces, after taking KΣ-invariants,

there is an action of the Hecke algebra TD(KΣ0). Recall also that we have defined ρ̄ :
GQ → GL2(F̄p) an odd, irreducible, continuous representation unramified outside Σ and
we have denoted by m the maximal ideal in T(KΣ0) (or in TD(KΣ0)) which corresponds
to ρ̄. We write

ρ̄|GQp
= ρ(α)

where α can be considered as a character of Q×p2 by the local class field theory.

Proposition III.7.2. Take an open, compact subgroup Kp of D×(Qp) and choose KΣ0

to be an open, compact subgroup of
∏
l∈Σ0 GL2(Zl) such that KpKΣ0K

Σ is neat. Then
FKΣ0K

Σ

m is injective as a smooth representation of Kp.

We do not define the notion of neatness for which we refer to section 0.6 in [Pin90].
We only need this condition to ensure that Kp acts freely as in the proof below. Any
sufficiently small open compact subgroup is neat.

Proof. Let M be any smooth finitely generated representation of Kp. Hence M is of finite
dimension and its dual is also smooth. We have

FKΣ0K
Σ = lim−→

K′p

FK′pKΣ0K
Σ

where K ′p ⊂ Kp runs over sufficiently small, normal open subgroups of O×D, so that K ′p acts
trivially on M . We can associate to M a local system M on D×(Q)\D×(Af )/KΣ0K

Σ.
Because Kp acts freely on D×(Q)\D×(Af )/KΣ0K

Σ by the assumption of neatness, we can
descend this system to each D×(Q)\D×(Af )/K ′pKΣ0K

Σ, where K ′p is as above. Moreover
on each D×(Q)\D×(Af )/K ′pKΣ0K

Σ,M is a constant local system and hence:

HomKp(M,FKΣ0K
Σ) ' lim−→

K′p

HomKp(M,FK′pKΣ0K
Σ) ' lim−→

K′p

(FK′pKΣ0K
Σ(M∨))Kp ' FKpKΣ0K

Σ(M∨)

where F(M∨) = H0(D×(Q)\D×(Af ),M∨). Because FKpKΣ0K
Σ(M∨) is an exact functor

(there is no H1), we get the result.

We will now start to analyse socles of quaternionic forms FKΣ0K
Σ

m . Let us start with
the following lemma:

Lemma III.7.3. Let β be a finite dimensional F̄p-representation of O×D. We have HomO×D(β∨,FKp

m ) '
FKp

m {β}, where FKp

m {β} is the space of automorphic functions D(Q)\D(Af )/Kp → β.

Proof. The isomorphism is given by an explicit map. See Lemma 7.4.3 in [EGH13].

Proposition III.7.4. The only irreducible F̄p-representations of D×(Qp) which appear as
submodules in FKΣ0K

Σ

m are isomorphic to σ∨ = σ(α)∨.

Proof. Observe that the only irreducible F̄p-representations of O×D which can appear in
the O×D-socle of FKp

m are duals of the Serre weights of ρ̄. This follows from the lemma
above and the definition of being modular, i.e. ρ̄ is modular of weight β (where β is a
representation of O×D) if and only if there exists an open compact subset U of D×(Af )
such that FU

m{β} 6= 0. By the lemma, this is equivalent to HomO×D(β∨,FU
m) 6= 0 which
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holds if and only if β∨ ∈ socO×DFU
m . Now the result follows from Theorem 7 in [Kha01],

as the only possible weights which can appear in the socle are α∨ and (αp)∨. Hence the
D×(Qp)-socle contains only σ(α)∨.

As a corollary we also get the [m]-isotypic analogue of the above

Corollary III.7.5. The only irreducible representations which appear as submodules in
FKΣ0K

Σ [m] are isomorphic to σ∨ = σ(α)∨.

We are now ready to strengthen the theorem which has appeared before

Theorem III.7.6. The representation σ ⊗ π ⊗ ρ̄ appears as a subquotient in Ĥ1
LT,F̄p

Proof. This follows from
π ⊗ ρ̄ ↪→ Ĥ1

LT,F̄p [σ
∨
m]

and the fact that the only irreducible D×(Qp)-representation which appears as a quotient
of σ∨m is σ.

We remark that if

n = dimF̄p HomD×(Qp)(σ(α)∨,FKΣ0K
Σ [m])

then one conjectures that n = 1 (even in the more general setting, see Section 8 of [Bre]).
Before moving further, let us recall a structure theorem of Breuil and Diamond for our

D×(Qp)-representations, which shows that our candidate for the mod p Jacquet-Langlands
correspondence defined above is of entirely different nature than the one with complex
coefficients.

Proposition III.7.7. The D×(Qp)-representation FKΣ0K
Σ [m] is of infinite length.

Proof. We give a sketch of the proof, which is contained in [BD12] as Corollary 3.2.4
(it is conditional on the local-global compatibility part of the Buzzard-Diamond-Jarvis
conjecture). Firstly observe that it is enough to prove that FKΣ0K

Σ [m] is of infinite
dimension over F̄p, because a representation of finite length will be also of finite dimension
as D× is compact modulo center. Suppose now that we have an automorphic form π
such that the reduction of its associated Galois representation ρ̄π is isomorphic to ρ̄ and
πKΣ0K

Σ 6= 0. Then there is a lattice Λπ = FKΣ0K
Σ

Z̄p
∩πKΣ0K

Σ inside πKΣ0K
Σ . Its reduction

Λ̄π = Λπ ⊗Z̄p F̄p lies in FKΣ0K
Σ [m] so it is enough to prove that we can find automorphic

representations π as above with πKΣ0K
Σ of arbitrarily high dimension. This is done by

explicit computations of possible lifts in [BD12].

This proposition indicates that Ĥ1
LT,F̄p

is a non-admissible smooth representation.

III.7.3 Non-admissibility

We have

Proposition III.7.8. The GL2(Qp)-representations Ĥ1
ss,F̄p

and Ĥ2
Xord,F̄p

are non-admissible
smooth F̄p-representations.
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Proof. If one of them would be admissible, then also the second would because of the
exact sequence

Ĥ1
Xord,F̄p

→ Ĥ1
F̄p → Ĥ1

ss,F̄p → Ĥ2
Xord,F̄p

→ Ĥ2
F̄p

It is enough to prove that Ĥ1
ss,F̄p

is non-admissible, or even that Ĥ1
LT,F̄p

is non-admissible.
Let us look at the Hochschild-Serre spectral sequence for the Iwahori level I of the Lubin-
Tate tower

H i(I, Ĥj

LT,F̄p
)⇒ H i+j

LT,I,F̄p

where we have denoted byH i+j
LT,I,F̄p

the fundamental representation at I-level. Now observe
that if Ĥ1

LT,F̄p
were admissible, then H0(I, Ĥ1

LT,F̄p
) would be of finite dimension. Because

H1(I, Ĥ0
LT,F̄p

) is of finite dimension (as Ĥ0
LT,F̄p

is), this would mean that H1
LT,I,F̄p

is finite-
dimensional. But geometrically Lubin-Tate tower at level I is an annulus (this is a standard
fact, one can prove it by methods of section 8.1) and hence H1

LT,I,F̄p
has to be of infinite

dimension (see remark 6.4.2 in [Ber93]). This contradiction finishes the proof.

Corollary III.7.9. The GL2(Qp)-representation Ĥ1
LT,F̄p

is a non-admissible smooth F̄p-
representation.

Proof. Follows from the proposition above.

III.7.4 On mod p Jacquet-Langlands correspondence

We come once again to the discussion of the mod p Jacquet-Langlands correspondence.
Remark that there are three possible candidates for the correspondence which appear in
our work:

1) The 2-dimensional irreducible representation σ of D×(Qp) defined by the naive mod p
Jacquet-Langlands correspondence.

2) The representation σm defined by global means and depending a priori on a maxi-
mal Hecke ideal m. It is of infinite length as a representation of D×(Qp) and contains σ∨
in its socle.

3) The representation defined via the cohomology

σLT = HomGQp×GL2(Qp)(ρ̄⊗F̄p π, Ĥ
1
LT,F̄p)

By the results above, it contains σ as a subquotient.

In the l-adic setting, we can define representations of D×(Qp) in the similar way and
it is known that σLT ' σ∨m. Moreover σm in the l-adic setting is 2-dimensional (at least
in the moderately ramified case). This is not the case in the mod p setting as we have
showed that representations of 1) and 2) are different (one is 2-dimensional, the other is
infinite-dimensional). The natural definition of the mod p correspondence seems to be
σLT and it is also natural to ask what is the relation between σLT and σ∨m for appropiate
m as considered before.
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III.8 Cohomology with compact support

In this section we will discuss what happens when we consider the cohomology with com-
pact support. Our basic result is negative and it states that the first cohomology group
with compact support of the fundamental representation Ĥ1

LT,c,F̄p
does not contain any

supersingular representation of GL2(Qp) as a subrepresentation. This suprising result,
which is very different from the situation known in the l-adic setting where l 6= p, leads to
a similar exact sequence as we have considered for cohomology without support, but this
time, we get that π ⊗ ρ̄ is contained in the H1 of the ordinary locus.

III.8.1 Geometry at pro-p Iwahori level

Let K(1) =
(

1+pZp pZp
pZp 1+pZp

)
and let I(1) =

(
1+pZp Zp
pZp 1+pZp

)
be the pro-p Iwahori subgroup.

We let
MLT,K(1) = Spf RK(1)

MLT,I(1) = Spf RI(1)

be the formal models for the Lubin-Tate space at levels K(1) and I(1) respectively. We
will compute RI(1) explicitely. This is also done in a more general setting in the work of
Haines-Rapoport (see Corollary 3.4.3 in [HR12]) but here we give a short and elementary
argument.

We know that RI(1) = R
I(1)
K(1) and hence we can use the explicit description of RK(1)

by Yoshida to get the result (see Proposition 3.5 in [Yos10]). Let W = W (F̄p) be the Witt
vectors of F̄p. There is a surjection W [[X̃1, X̃2]] � RK(1) which maps X̃i to Xi where
Xi (i = 1, 2) are local parameters for RK(1) which form a Fp-basis of mRK(1) [p] = {x ∈
mRK(1) |[p](x) = 0}, where [p] is explained below. We will find parameters for RI(1) =
R
I(1)
K(1). Observe that for b ∈ Fp we have (see chapter 3 of [Yos10])

(
1 b
0 1

)
X1 = X1

(
1 b
0 1

)
X2 = [b]X1 +Σ X2

where +Σ is the addition on the universal deformation of the unique formal group over
F̄p of height 2 and [.] gives the structure of multiplication by elements of Zp on the same
universal deformation Σ. See Chapter 3 of [Yos10] for details. We see that X2 is not
invariant under I(1) and hence we define X ′2 =

∏
b∈Fp([b]X1 +Σ X2) which is. We claim

that (X1, X
′
2) are local parameters for RI(1). Indeed if z belongs to RI(1) = R

I(1)
K(1) then

we may write it as z = P (X1) +X2Q(X1, X2), where P ∈ W [[X1]] and Q ∈ W [[X1, X2]].
As P (X1) is invariant under I(1), we see that also X2Q(X1, X2) has to be invariant under
I(1). Because of the action of

( 1 b
0 1
)
on X2 described above and the fact that RK(1) is a

regular local ring hence factorial, we see that X ′2 divides X2Q(X1, X2) (we use here the
fact that [b]X1 +Σ X2 and [b′]X1 +Σ X2 are not associated for b 6= b′; this follows from
Proposition 4.2 in [Str08]). This leads to z = P (X1) + X ′2Q

′(X1, X2) for some Q′ which
is I(1)-invariant and hence we conclude by successive approximations (since RK(1) is X ′2-
adically complete) that there is a power series f such that z = f(X1, X

′
2) (we use the fact

that polynomials are dense in formal series).
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Let us observe that for a ∈ F×p we have for i = 1, 2: [a]Xi = uXi, where u is a unit in
RK(1). Let us now look at the relation defining RK(1) inside W [[X̃1, X̃2]] which appears
in Proposition 3.5 of [Yos10]. We have

p = u
∏

(a1,a2)∈F2
p\{0,0}

([a1]X1 +Σ [a2]X2)

where u is some unit in RK(1). Let us write a ∼ b whenever a = ub for some unit u in
RK(1). Thus we have

p ∼
∏

(a1,a2)∈F2
p\{0,0}

([a1]X1+Σ[a2]X2) ∼

 ∏
a1∈F×p

[a1]X1


 ∏
a1∈Fp

∏
a2∈F×p

[a2]([a1/a2]X1 +Σ X2)

 ∼

∼

 ∏
a1∈F×p

[a1]X1


 ∏
a2∈F×p

X ′2

 ∼ (X1X
′
2)p−1

Hence we have p = u′(X1X
′
2)p−1 for some unit u′ in RK(1) a priori, but we can see

that u′ is in fact a unit in RI(1). Because W [[X,Y ]] is a complete local ring with an
algebraically closed residue field there exists a (p − 1)-th root of u′, and hence we can
write p = (X ′1X ′′2 )p−1. We want to conclude that this is the only relation in RI(1) which
means that there exists a surjection

B = W [[X̃ ′1, X̃ ′′2 ]] � RI(1)

with kernel f = (X̃ ′1X̃ ′′2 )p−1 − p. First of all, observe that RI(1) and B/fB are regular
local rings of dimension 2 with a surjection B/fB � RI(1). We claim that this map has
to be necessarily an injection also. Indeed, this holds for any surjective morphism A� R
of regular local rings of the same dimension by using the fact that that for a regular local
ring we have gr•mA A ' SymmA/m

2
A. This yields an isomorphism at the graded level which

lifts to the level of rings. All in all, we conclude that

Proposition III.8.1. We have

RI(1) 'W [[X,Y ]]/((XY )p−1 − p)

This means thatMLT,I(1) is made of p−1 copies of an open annulus in P1 after a base
change to W [ p−1

√
p]:

RI(1) ⊗W W [ p−1
√
p] '

p−1∏
i=1

W [[X,Y ]]/(XY − p−1
√
p · ζip−1)

III.8.2 Cohomology at pro-p Iwahori level

We compute H1
c (MLT,I(1), F̄p) (we will omit F̄p from the notation in what follows). Let

A be an open annulus in P1. We can write a long exact sequence

0→ H0
c (A)→ H0(P1)→ H0(P1\A)→ H1

c (A)→ H1(P1)

We know that
H1(P1) = H0

c (A) = 0
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dimF̄p H
0(P1) = 1

dimF̄p H
0(P1\A) = 2

and hence it follows that
dimF̄p H

1
c (A) = 1

Because geometricallyMLT,I(1) is made of p− 1 copies of A, we have

dimF̄p H
1
c (MLT,I(1)) = p− 1

Let H = HGL2(I(1)) = F̄p[I(1)\GL2(Qp)/I(1)] be the mod p Hecke algebra at the pro-
p Iwahori level. Let I be the Iwahori subgroup of GL2(Zp). We look at the action of
F̄p[I/I(1)] ' F̄p[(F×p )2] on the cohomology. We know by [Str08] that it acts by determinant
on connected components of MLT,K(1) and hence on connected components of MLT,I(1)
so we have a decomposition of H1

c (MLT,I(1)) into p− 1 pieces of dimension 1:

H1
c (MLT,I(1)) =

⊕
χ:F×p→F̄×p

H1
c (MLT,I(1))χ

where H1
c (MLT,I(1))χ is the part of H1

c (MLT,I(1)) on which F̄p[(F×p )2] acts through χ◦det.

III.8.3 Vanishing result

We will now prove that the supersingular representation π does not appear in Ĥ1
LT,c,F̄p

.
First of all, remark that it is enough to prove that the H-module πI(1) does not appear
in (Ĥ1

LT,c,F̄p
)I(1), because the functor π 7→ πI(1) induces a bijection between supersingular

representations and supersingular Hecke modules (see [Vig04]). We have the Hochschild-
Serre spectral sequence

H i(I(1), Ĥj

LT,c,F̄p
)⇒ H i+j

LT,c,I(1),F̄p

where we have denoted by H i+j
LT,c,I(1),F̄p

the fundamental representation at I(1)-level. This
gives a long exact sequence

0→ H1(I(1), Ĥ0
LT,c,F̄p)→ H1

LT,c,I(1),F̄p → (Ĥ1
LT,c,F̄p)

I(1) → H2(I(1), Ĥ0
LT,c,F̄p)

Because Ĥ0
LT,c,F̄p

= 0 as H0
c (MLT , F̄p) = 0 we have an H-equivariant isomorphism

H1
LT,c,I(1),F̄p ' (Ĥ1

LT,c,F̄p)
I(1)

This means that if πI(1) appears in (Ĥ1
LT,c,F̄p

)I(1) then it appears also in H1
LT,c,I(1),F̄p

. But
because H1

LT,c,I(1),F̄p
consists as a GL2(Qp)◦ = (ker(det))-representation of multiple copies

of H1
c (MLT,I(1), F̄p), it is enough to show that πI(1) does not appear in

IndGL2(Qp)
GL2(Qp)◦Qp H

1
c (MLT,I(1), F̄p) ' H1

c (MLT,I(1), F̄p)⊕2

To prove it, it suffices to show that no supersingular H-module appears in it. Let M
be any supersingular H-module. Then we know that it is 2-dimensional and of the form
M2(0, z, ω) as in Section 3.2 of [Vig04], where ω is a character of I/I(1). If we write
I/I(1) = F×p × F×p and ω = η1 ⊗ η2 then M = (η1 ⊗ η2) ⊕ (η2 ⊗ η1) as a I/I(1)-module.
If M appears in H1

c (MLT,I(1), F̄p), then I/I(1) acts on M by determinant and hence
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η1 = η2. This would mean that H1
c (MLT,I(1))η1 is at least 2-dimensional, which is a

contradiction. Hence the only possibility is in this case that two products η1 ⊗ η1 appear
in different copies of H1

c (MLT,I(1), F̄p)⊕2. But this is also not possible. Indeed, let us
consider the operator S = I(1)( 0 1

1 0 )I(1). It acts on both copies of H1
c (MLT,I(1), F̄p) in

the same way, as can be seen by looking at the decomposition LT =
∐
LT (i) (here LT

means the Rapoport-Zink space for GL2(Qp)) which is GL2(Qp)◦ × D(Qp)◦-equivariant
and hence we have GL2(Qp)◦-equivariantly that LT (i) ' LT (0). But on the other hand,
Vigneras in [Vig04] proves that S acts onM by two different scalars (one being zero, other
non-zero) and hence M cannot appear in IndGL2(Qp)

GL2(Qp)◦Qp H
1
c (MLT,I(1), F̄p). All in all, we

conclude that πI(1) does not appear in (Ĥ1
LT,c,F̄p

)I(1) and hence

Theorem III.8.2. The supersingular representation π does not appear in Ĥ1
LT,c,F̄p

.

We could rephrase it also as
Ĥ1
LT,c,F̄p,(π) = 0

Remark III.8.3. Observe that the above proof does not use in any particular form the fact
that we are working with GL2(Qp), besides the fact that the functor π 7→ πI(1) induces a
bijection between supersingular representations and supersingular H-modules. Apart from
that, the results of Vigneras and Yoshida holds for GL2(F ) as well, where F is a finite
extension Qp and show that there are no supersingular modules in the cohomology with
compact support of the Lubin-Tate tower at the pro-p Iwahori level. This leads to the
conclusion that supersingular representations of GL2(F ) attached to these supersingular
modules by the construction of Paskunas (see [Pas04]) do not appear in the cohomology
with compact support of the Lubin-Tate tower at infinite level. We remark that, contrary
to F = Qp case, those supersingular representations constructed by Paskunas do not con-
jecturally give all the supersingular representations of GL2(F ).

The above theorem gives us, when combined with the exact sequence for the supersin-
gular locus, an appearance of the mod p local Langlands correspondence in the cohomology
of the ordinary locus (in contrast with the mod l situation).

Corollary III.8.4. We have an GL2(Qp)×GQp-equivariant injection

π ⊗ ρ̄ ↪→ Ĥ1
ord,F̄p

Moreover, this vanishing result can be used in the study of non-admissibility and in
the description of the cohomology of certain Shimura curves.

III.8.4 Non-admissibility

We will now show that our cohomology groups are non-admissible representations of
GL2(Qp). We start with:

Proposition III.8.5. The GL2(Qp)-representations Ĥ2
ss,c,F̄p

and Ĥ1
ord,F̄p

are non-admissible
smooth F̄p-representations.

Proof. If one of them would be admissible, then also the second would because of the
exact sequence

Ĥ1
ss,c,F̄p → Ĥ1

F̄p → Ĥ1
ord,F̄p → Ĥ2

ss,c,F̄p → Ĥ2
F̄p
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But we know that Ĥ1
ord,F̄p

is an induced representation

IndGL2
B(∞)

(⊕
a

Ĥ1
a,∞,F̄p

)

so if it were admissible, then the localisation of it at π would have to vanish. This is not
possible by the corollary above.

Corollary III.8.6. The GL2(Qp)-representation Ĥ2
LT,c,F̄p

is a non-admissible smooth F̄p-
representation.

Proof. Follows from the proposition above.

III.8.5 Cohomology of Shimura curves

We will briefly sketch another consequence of vanishing of Ĥ1
LT,c,F̄p,(π) andH

1
c (MLT , F̄p)(π).

Now recall the Faltings isomorphism (see [Far08]) which gives us

H1
c (MLT , F̄p)(π) = H1

c (MDr, F̄p)(π) = 0

whereMDr is the Drinfeld tower at infinity (see [Dat12] for details). We have a spectral
sequence coming from the p-adic uniformisation of the Shimura curve Sh associated to the
algebraic group G′′ arising from the quaternion algebra over Q which is ramified precisely
at p and some other prime q:

Ep,q2 = ExtpGL2(Qp)(H
2−q
c (MDr,Kp , F̄p), C∞(G′(Q)\G′(A), F̄p)K

p)⇒ Hp+q
c (ShanKpKp , F̄p)

where we have denoted by G′ the algebraic group arising from the quaternion algebra over
Q which is ramified precisely at q and ∞. For this, see [Far04] where it is proven for Q̄l

but the proof works also for F̄p (the proof is also contained in the appendix B of [Dat06]).
Choose any non-Eisenstein maximal ideal n in the Hecke algebra ofG′′ whose associated

Galois representation corresponds at p to the supersingular representation π we have
chosen before. Take the direct limit over Kp and localise the above spectral sequence at n
to get

ExtpGL2(Qp)(H
2−q
c (MDr, F̄p)(π), C

∞(G′(Q)\G′(A), F̄p)K
p

n )⇒ Hp+q
c (ShanKp , F̄p)n

The localisation of H2−q
c (MDr, F̄p) at π appears because C∞(G′(Q)\G′(A), F̄p)K

p

n is π-
isotypic. We remark here that spaces H2−q

c (MDr, F̄p) are admissible as can be seen from
the spectral sequence and the fact that other appearing spaces are admissible. Using our
vanishing result we get an interesting isomorphism

Ext1
GL2(Qp)(H

2
c (MDr, F̄p)(π), C

∞(G′(Q)\G′(A), F̄p)K
p

n ) ' H1
c (ShanKp , F̄p)n

This can be possibly used to study the mod p cohomology of the Shimura curve Sh. We
shall treat this issue elsewhere.

III.9 Concluding remarks

Let us finish by giving some remarks and stating natural questions.
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III.9.1 l-adic case

Observe that our arguments work well also in the mod l 6= p setting and circumvent
the use of vanishing cycles. The idea of localisation at a supersingular (supercuspidal)
representation appears also in the work of Dat. See especially [Dat12] where the author
discusses localisations both for GLn and quaternion algebras and then uses it to describe
the supercuspidal part of the cohomology.

One might want also to see [Shi], which bears some resemblance to certain arguments
we use. Shin describes the mod l cohomology of Shimura varieties by using results of Dat
about the mod l cohomology of the Lubin-Tate tower. In our work, we start from global
results of Emerton to deduce from them statements about local objects.

III.9.2 Beyond modular curves

The geometric arguments we have given also applies to Shimura curves considered by
Carayol in [Car86] and we can consider similar exact sequences relating the ordinary locus
and the supersingular locus in this setting. Nevertheless, in this case we cannot go on with
arguments as we do not have a definition of the mod p local Langlands correspondence for
extensions of Qp. In fact, such a construction seems a little bit problematic as might be
seen from the work of Breuil-Paskunas ([BP12]), where the authors show that there are
much more automorphic representations than Galois representations. The hope is that by
looking at the cohomology of the Lubin-Tate tower, one should be able to tell how the
correspondence should look like. We will pursue this subject in our subsequent work.

III.9.3 Adic spaces

We have chosen to work with Berkovich spaces, but one might as well wonder how the
things translate into the setting of adic spaces of R. Huber ([Hub96]). In fact, everything
that we have considered can be rewritten in the language of adic spaces and we might
consider the same long exact sequences as above (though these exact sequences will be
inversed due to the fact that adic spaces behave like formal schemes). The main difference
between those two contexts lies in the ordinary locus which in the case of adic spaces will
contain additional points which lie in the closure of the ordinary locus from the setting
of Berkovich spaces. Nevertheless, the cohomology groups in both settings will be similar
and we refer a reader to Chapter IV for details. Let us remark also, that the comparison
between mod p étale cohomology of a formal scheme and its (adic) analytification is proved
in Theorem 3.7.2 of [Hub96].

III.9.4 Serre’s letters

Though it does not appear explicitely in our work (besides the comparison of Hecke alge-
bras), we were influenced by two letters written by Jean-Pierre Serre (see [Ser96]). It is
there that in some sense appears for the first time the modified mod l Local Langlands
correspondence which goes under the name of the universal unramified representation (see
the letter to Kazhdan). Indeed, if we were to suppose that our global lift ρ̄ which we have
used is actually unramified everywhere outside p, then there is no need to recall either the
modified mod l Local Langlands correspondence or new vectors, and we could formulate
everything in the language of Serre.





Chapter IV

On p-adic non-abelian Lubin-Tate
theory

IV.1 Introduction

This Chapter is a sequel to Chapter III, where we have studied the mod p étale cohomology
of the Lubin-Tate tower. Here we turn to the study of the p-adic completed and analytic
cohomologies. There are two goals which we want to accomplish. The first one is to show
a result analogous to the one obtained in Chapter III, namely to show that the p-adic local
Langlands correspondence for GL2(Qp) appears in the étale cohomology of the Lubin-Tate
tower at infinity. The methods we use are partly those of Chapter III (localisation at a
supersingular representation; use of the local-global compatibility of Emerton), though we
approach them differently by working in the setting of adic spaces (we have worked with
Berkovich spaces in Chapter III). This gives us more freedom as we can work directly at
the infinite level (modular curves at the infinite level; Lubin-Tate tower at the infinite
level) thanks to the work of Scholze on perfectoid spaces ([Sch12a], [Sch13], [SW12]). In
this way, we do not need anymore to pass to the limit in the cohomology, as working
at the infinite level is the same as working with the completed cohomology (see Chapter
IV of [Sch13] for torsion coefficients). We prove our main result (Theorem 4.3) for local
Galois representations ρp which are restrictions of some global pro-modular (a notion from
[Eme11a]) representations ρ and such that the mod p reduction ρ̄p is absolutely irreducible.
We need these assumptions in order to be able to use the main result of [Eme11a].

The second goal of this Chapter is to discuss the folklore conjecture which roughly states
that the p-adic local Langlands correspondence appears in the de Rham cohomology of the
Drinfeld tower. As far as we know, this conjecture is not stated anywhere explicitely in the
literature, though there was some work done towards it. The reader should consult [Sch10]
for some partial progress at the 0-th level of the tower. Thanks to the work of Scholze-
Weinstein ([SW12]) we can work directly at the infinite level which we do. Moreover,
because of the duality of Rapoport-Zink spaces at the infinite level (which goes back to
Faltings; see Section 7 of [SW12]), we know that the Drinfeld space at infinityMDr,∞ is
isomorphic to the Lubin-Tate space at infinityMLT,∞ and hence we can consider only the
Lubin-Tate tower which is easier to relate to modular curves.

As to the folklore conjecture, we give a short argument at the beginning of Section 4,
which explains why the de Rham cohomology ofMLT,∞ simplifies greatly. The reason is
that for any perfectoid space X (hence forMLT,∞ after [SW12]) the cohomology groups
of j-th differentials H i(X,Ωj

X) vanishes for j > 0 and any i. This reduces the study of
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the de Rham cohomology to the study of the cohomology of the structure sheaf (which we
refer to as the analytic cohomology - with topology defined by open subsets) which should
be a good substitute for the de Rham cohomology in the setting of perfectoid spaces. We
state the folklore conjecture for the analytic cohomology in the last section.

At the end we remark that one problem with the de Rham cohomology for perfectoid
spaces, if one would like to define it in some meaningful way, is the lack of finiteness
result. We should mention the work of Cais ([Cai09]), where the author consider integral
structures on the de Rham cohomology of curves. The aim is to p-adically complete the de
Rham cohomology of the tower of modular curves, as was done with the étale cohomology
by Emerton ([Eme06c]). It seems interesting to determine what one would get by applying
his construction at each finite level and then passing to the limit and how it would relate
to the de Rham cohomology of the modular curve at the infinite level.

IV.2 Modular curves at infinity
In this section we review the geometric background which we use. We describe modular
curves (and their compactifications) at the infinite level and we deal with the ordinary
locus and the supersingular locus. We will use the language of adic spaces for which the
reader should consult [Hub96] and [Sch12a].

We let E be a finite extension of Qp with the ring of integers O and the residue field
k = O/$ where $ is a uniformiser. This is our coefficient field.

IV.2.1 Geometry of modular curves

We denote open modular curves over C for an open compact subset K ⊂ GL2(Af ) by

Y (K) = GL2(Q)\(C\R)×GL2(Af )/K

There is a canonical algebraic model of it over Q. We fix some complete and algebraically
closed extension C of Qp. Let OC be the ring of integers of C. We consider modular
curves as adic spaces over Spa(C,OC) which we may do after base-changing each Y (K).

We let X(K) be the compactification of Y (K), which we also consider as an adic
space over Spa(C,OC). We will work with modular curves at the infinite level. We recall
Scholze’s results. We use ∼ in the sense of Definition 2.4.1 in [SW12].

Theorem IV.2.1. For any sufficiently small level Kp ⊂ GL2(Apf ) there exist adic spaces
Y (Kp) and X(Kp) over Spa(C,OC) such that

Y (Kp) ∼ lim←−
Kp

Y (KpK
p)

X(Kp) ∼ lim←−
Kp

X(KpK
p)

where Kp runs over open compact subgroups of GL2(Qp).

Proof. See Theorem III.1.2 in [Sch13].

In what follows we will write Y = Y (Kp) and X = X(Kp), having fixed one tame level
Kp throughout the text.

For the maximal compact open subgroup GL2(Zp) we can define the supersingular
locus Y (GL2(Zp)Kp)ss (respectively, the ordinary locus Y (GL2(Zp)Kp)ord) as the inverse



IV.2. Modular curves at infinity 85

image under the reduction of the set of supersingular points (resp. closure of the inverse
image of the ordinary locus) in the special fiber of Y (GL2(Zp)Kp). Then for any compact
open subgroup Kp ⊂ GL2(Zp), we define Y (KpK

p)ss (resp. Y (KpK
p)ord) as the pullback

of Y (GL2(Zp)Kp)ss (resp. Y (GL2(Zp)Kp)ord). Hence Y (KpK
p)ord is the complement of

Y (KpK
p)ss and hence a closed subspace of Y (KpK

p). We define similarly the supersingular
locus X(KpK

p)ss and the ordinary locus X(KpK
p)ord of X(KpK

p). Using the pullback
from the finite level, we define also Xss, Yss, Xord, Yord at the infinite level. The reader may
consult the discussion in [Sch13] which appears after Theorem III.1.2.

Theorem IV.2.2. There exist adic spaces Yss, Yord and Xss, Xord over Spa(C,OC) such
that

Yss ∼ lim←−
Kp

Y (KpK
p)ss

Yord ∼ lim←−
Kp

Y (KpK
p)ord

and similarly for Xss and Xord. Here Kp runs over open compact subgroups of GL2(Qp).

Proof. Follows from Proposition 2.4.3 in [SW12].

One of the main results of [Sch13] (Theorem III.1.2), is the construction of the Hodge-
Tate period map πHT which is a GL2(Qp)-equivariant morphism

πHT : X → (P1)ad

where (P1)ad is the adic projective line over Spa(C,OC). This morphism commutes with
Hecke operators away from p for the trivial action of these Hecke operators on (P1)ad.
Moreover, the decomposition of X into the supersingular and the ordinary locus can be
seen at the flag variety level. Namely, we have (see the discussion after Theorem III.1.2
in [Sch13])

Xord = π−1
HT(P1(Qp))

Xss = π−1
HT((P1)ad\P1(Qp))

We let
j : Xss ↪→ X

denote the open immersion and we put

i : Xord → X

For any injective étale sheaf I on X we have an exact sequence of global sections

0→ ΓXord(X, I)→ Γ(X, I)→ Γ(Xss, j
∗I)→ 0

which gives rise to the exact sequence of étale cohomology for any étale sheaf F on X
(take an injective resolution I• of F and apply the above exact sequence to it)

...→ H0(Xss, j
∗F )→ H1

Xord(X,F )→ H1(X,F )→ H1(Xss, j
∗F )→ ...

By specialising F to a constant sheaf O/$sO (s > 0) we get an exact sequence

...→ H0(Xss,O/$sO)→ H1
Xord(X,O/$sO)→ H1(X,O/$sO)→ H1(Xss,O/$sO)→ ...
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We can obtain an analogous exact sequence for analytic cohomology which we review later.
In what follows we will be interested in the p-adic completed cohomology, introduced by
Emerton in [Eme06c]. We define

H i(X,E) =
(

lim←−
s

H i
et(X,O/$sO)

)
⊗O E

Using the fact that X ∼ lim←−Kp X(KpK
p) and Theorem 7.17 in [Sch12a], we have

H i(X,E) =

lim←−
s

lim−→
Kp

H i
et(X(KpK

p),O/$sO)

⊗O E
which is precisely the p-adic completed cohomology of Emerton. We use similar definitions
for Xss and Xord.

IV.2.2 Ordinary locus

We recall the decomposition of the ordinary locus, which implies that representations
arising from the cohomology are induced from a Borel subgroup. This is a classical and
well-known result, but we shall give it a short proof using recent results of Scholze and the
fact that we are working at the infinite level. We have given a different proof in Section
2.2 of Chapter III.

Proposition IV.2.3. The étale (and also analytic) cohomology of Xord is induced from
a Borel subgroup B(Qp) of upper-triangular matrices in GL2(Qp)

H i
Xord(X,F ) = IndGL2(Qp)

B(Qp) W (F )

where F = O/$sO is an étale constant sheaf on Xord and W (F ) is a certain cohomology
space defined below in the proof which depends on F and admits an action of B(Qp).

Proof. Recall that Xord = π−1
HT(P1(Qp)), where πHT is the Hodge-Tate period map. Let

∞ = ( 1
0 ) ∈ P1(Qp). The stabilizer of ∞ is equal to the Borel subgroup B(Qp) of upper-

triangular matrices in GL2(Qp). We have

H i
Xord(X,F ) = H i(Xord, i

!F ) = H0(P1(Qp), RiπHT,∗(i!F )) = IndGL2(Qp)
B(Qp) H0({∞}, RiπHT,∗(i!F ))

where the second isomorphism follows from the continuity of πHT. Those are all smooth
spaces, because H i(Xord, i

!F ) is smooth (by Theorem IV.2.2 and recalling that F =
O/$sO).

IV.2.3 Supersingular locus

Let us denote byMLT,Kp the Lubin-Tate space for GL2(Qp) at the level Kp, where Kp is
a compact open subgroup of GL2(Qp). See Section 6 of [SW12] for a definition. We just
recall that this is a deformation space for p-divisible groups with an additional data and
it is a local analogue of modular curves. We view it as an adic space over Spa(C,OC).

Once again, we would like to pass to the limit and work with the space at infinity.
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Theorem IV.2.4. There exists a perfectoid spaceMLT,∞ over Spa(C,OC) such that

MLT,∞ ∼ lim←−
Kp

MLT,Kp

where Kp runs over compact open subgroups of GL2(Qp).

Proof. This is Theorem 6.3.4 from [SW12]. One definesMLT,∞ as a deformation functor
of p-divisible groups with a trivialization of Tate modules.

To compareX andMLT,∞ (hence their cohomology groups) we use the p-adic uniformi-
sation of Rapoport-Zink at the infinite level. Let us denote by D the quaternion algebra
over Q which is ramified exactly at p and∞. The p-adic uniformisation of Rapoport-Zink
states

Proposition IV.2.5. We have an isomorphism of adic spaces

Xss ∼ lim←−
Kp

D×(Q)\
(
MLT,Kp ×GL2(Apf )

)
/KpK

p

This isomorphism is equivariant with respect to the action of the Hecke algebra of level
Kp.

Proof. The uniformisation at finite level is proved in [RZ96]. We adify their construction
and pass to the limit using Theorem IV.2.2.

IV.3 On admissible representations

Having recalled the geometric results, we now pass to the results about representations of
GL2(Qp). We review and prove some facts about Banach admissible representations. Then
we recall recent results of Paskunas which allow us to consider the localisation functor.

IV.3.1 General facts and definitions

We start with general facts about admissible representations. In our definitions, we will
follow [Eme10]. As before, let E be a finite extension of Qp with ring of integers O,
a uniformiser $ and the residue field k. Let C(O) denote the category of complete
Noetherian local O-algebras having finite residue fields. Let us consider A ∈ C(O). We
let G be any connected reductive group over Qp.

Definition IV.3.1. Let V be a representation of G over A. A vector v ∈ V is smooth
if v is fixed by some open subgroup of G and v is annihilated by some power mi of the
maximal ideal of A. Let Vsm denote the subset of smooth vectors of V . We say that a
G-representation V over A is smooth if V = Vsm.

A smooth G-representation V over A is admissible if V H [mi] (the mi-torsion part of the
subspace of H-fixed vectors in V ) is finitely generated over A for every open compact
subgroup H of G and every i ≥ 0.

Definition IV.3.2. We say that a G-representation V over A is $-adically continuous
if V is $-adically separated and complete, V [$∞] is of bounded exponent, V/$iV is a
smooth G-representation for any i ≥ 0.
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Definition IV.3.3. A $-adically admissible representation of G over A is a $-adically
continuous representation V of G over A such that the induced G-representation on
(V/$V )[m] is admissible smooth over A/m.

This definition implies that for every i ≥ 0, the G-representation V/$iV is smooth
admissible. See Remark 2.4.8 in [Eme10].

Definition IV.3.4. We call a G-representation V over E Banach admissible if there
exists a G-invariant lattice V ◦ ⊂ V over O such that V ◦ is $-adically admissible as a
representation of G over O.

Proposition IV.3.5. The category of $-adically admissible representations of G over
A is abelian and moreover, a Serre subcategory of the category of $-adically continuous
representations.

Proof. The category is anti-equivalent to the category of finitely generated augmented
modules over certain completed group rings. See Proposition 2.4.11 in [Eme10].

Now, we will prove an analogue of Lemma 13.2.3 from [Boy99] in the l = p setting. We
will later apply this lemma to the cohomology of the ordinary locus to force its vanishing
after localisation at a supersingular representation of GL2(Qp). We have proved it already
in the mod p setting as Lemma 3.3 in Chapter III.

Lemma IV.3.6. For any smooth admissible representation (π, V ) of the parabolic sub-
group P ⊂ G over A, the unipotent radical U of P acts trivially on V .

Proof. Let L be a Levi subgroup of P , so that P = LU . Let v ∈ V and let KP = KLKU

be a compact open subgroup of P such that v ∈ V KP . We choose an element z in the
centre of L such that:

z−nKP z
n ⊂ ... ⊂ z−1KP z ⊂ KP ⊂ zKP z

−1 ⊂ ... ⊂ znKP z
−n ⊂ ...

and
⋃
n≥0 z

nKP z
−n = KLU . For every n andm, modules V z−nKP z

n [mi] and V z−mKP z
m [mi]

are of the same length for every i ≥ 0, as they are isomorphic via π(zn−m). We natu-
rally have an inclusion V z−nKP z

n [mi] ⊂ V z−mKP z
m [mi] and hence we get an equality

V z−nKP z
n [mi] = V z−mKP z

m [mi]. By smoothness, there exists i such that v ∈ V [mi]. Thus
we have v ∈ V KP [mi] = V z−nKP z

n [mi] = V KLU [mi] which is contained in V U [mi].

Lemma IV.3.7. For any $-adically admissible representation (π, V ) of the parabolic
subgroup P ⊂ G over A, the unipotent radical U of P acts trivially on V .

Proof. By the remark above, each V/$iV is admissible, and hence the preceding lemma
applies, so that U acts trivially on each V/$iV . But V = lim←−i V/$

iV , hence U acts
trivially on V .

Later on, we will need the following result.

Lemma IV.3.8. Let V = IndGP W be a parabolic induction. If V is a $-adically admissible
representation of G over A, then W is a $-adically admissible representation of P over
A.

Proof. This follows from Theorem 4.4.6 in [Eme10].
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IV.3.2 Localisation functor

Let π be a supersingular representation of GL2(Qp) over k. Recall that supersingular
representations correspond to irreducible two-dimensional Galois representations under
the local Langlands correspondence modulo p. See [Ber11].

In [Pas13], Paskunas has proved the following result (Proposition 5.32)

Proposition IV.3.9. We have a decomposition:

RepadmGL2(Qp),ξ(O/$
sO) = RepadmGL2(Qp),ξ(O/$

sO)(π) ⊕ RepadmGL2(Qp),ξ(O/$
sO)(π)

where RepadmGL2(Qp),ξ(O/$sO) is the (abelian) category of smooth admissible O/$sO-representations
admitting a central character ξ, RepadmGL2(Qp),ξ(O/$sO)(π) (resp. RepadmGL2(Qp),ξ(O/$sO)(π))
is the subcategory of it consisting of representations Π such that all irreducible subquotients
of Π are (resp. are not) isomorphic to π.

We denote the projection

RepadmGL2(Qp),ξ(O/$
sO) 7→ RepadmGL2(Qp),ξ(O/$

sO)(π)

by
V 7→ V(π)

and we refer to it as the localisation functor with respect to π. The existence of a central
character follows from the work [DS13] for irreducible representations. In what follows,
we will ignore the central character ξ in our notations, though whenever we localise we
mean that we firstly localise the representation at ξ and then we project as above.

IV.4 p-adic Langlands correspondence and analytic coho-
mology

In this section we show that the p-adic local Langlands correspondence for GL2(Qp) ap-
pears in the étale cohomology of the Lubin-Tate tower at infinity. We also state a conjec-
ture about the analytic cohomology of the Lubin-Tate perfectoid.

IV.4.1 p-adic Langlands correspondence

For this section we refer the reader to [Ber11] (for the Colmez functor) and [Pas13] (for
equivalence of categories). We recall that Colmez has constructed a covariant exact functor
V

V : RepO(GL2(Qp))→ RepO(GQp)

which sends O-representations of GL2(Qp) to O-representations of GQp = Gal(Q̄p/Qp).
Moreover this functor is compatible with deformations and induces an equivalence of
categories when restricted to appropiate sub-representations. We call the inverse of this
functor the p-adic local Langlands correspondence and we denote it by B(·). For our
applications we will only need the fact that for p-adic continuous representations ρ :
GQp → GL2(E), B(ρ) is a Banach admissible E-representation. Furthermore, when ρ is
irreducible, then B(ρ) is topologically irreducible.

Let ρ̄ : GQp → GL2(k) be the reduction of ρ which we assume to be irreductible. Let
π be the supersingular representation of GL2(Qp) over k which corresponds to ρ̄ by the
mod p local Langlands correspondence, that is V(π) = ρ̄. Then one knows that B(ρ) is
an object of the category RepadmGL2(Qp)(E)(π) defined above.
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IV.4.2 Étale cohomology

We recall the results of Emerton on the p-adic completed cohomology and then we prove
that certain p-adic Banach representations appear in the étale cohomology of MLT,∞.
From now on we work in the global setting. Let ρ : GQ = Gal(Q̄/Q) → GL2(E) be a
continuous Galois representation. We assume that it is unramified outside some finite set
Σ = Σ0 ∪{p}. Moreover we assume that its reduction ρ̄ is modular (that is, isomorphic to
the reduction of a Galois representation associated to some automorphic representation
on GL2(Q)) and ρ̄p = ρ̄|GQp

is absolutely irreducible.

Let us recall that we have introduced spaces X,Y depending on the tame level Kp. We
now assume that Kp is unramified outside Σ. We shall factor Kp as Kp = KΣ0K

Σ0 . Let
TΣ = O[Tl, Sl]l /∈Σ be the commutative O-algebra with Tl, Sl formal variables indexed by
l /∈ Σ. This is a standard Hecke algebra which acts on modular curves by correspondences.

To the modular Galois representation ρ̄ : GQ → GL2(E) we can associate the maximal
Hecke ideal m of TΣ which is generated by $ (uniformiser of O) and elements Tl + al
and lSl − bl, where l is a place of Q which does not belong to Σ, X2 + ālX

1 + b̄l is the
characteristic polynomial of ρ̄(Frobl) and al, bl are any lifts of āl, b̄l to O.

We let πΣ0(ρ) = ⊗l∈Σ0πl(ρl) be the tensor product of E-representations of GL2(Ql)
(l ∈ Σ0) associated to ρl = ρ|GQl

by the generic version of the l-adic local Langlands
correspondence (see [EH11]).

We assume that ρ is pro-modular in the sense of Emerton (see [Eme11a]). Let p be
the prime ideal of TΣ associated to ρ (similarly as we have associated m to ρ̄). We have
an obvious inclusion p ⊂ m. We remark that pro-modularity is a weaker condition than
modularity and it can be seen as saying that ρ is a Galois representation associated to
some p-adic Hecke eigensystem coming from the completed Hecke algebra (the projective
limit over finite level Hecke algebras). Recall that we have assumed that ρ̄p = ρ̄|GQp

is
absolutely irreducible. This permits us to state the main result of [Eme11a] as

Theorem IV.4.1. Let ρ : GQ → GL2(E) be a continuous Galois representation which is
pro-modular and such that ρ̄p is absolutely irreducible. Then we have a GQ ×GL2(Qp)×∏
l∈Σ0 GL2(Ql)-equivariant isomorphism of Banach admissible E-representations.

H1(Y,E)[p] ' ρ⊗E B(ρp)⊗E πΣ0(ρ)KΣ0

We recall that the cohomology group on the left is the p-adic completed cohomology
of Emerton

H1(Y,E) =

lim←−
s

lim−→
Kp

H1
et(Y (KpKp),O/$sO)

⊗O E
where Kp runs over compact open subgroups of GL2(Qp).

Let us remark that the Galois action of GQp arises on Y , X,MLT,∞ (which we treat
as adic spaces over Spa(C,OC)) from the Galois action on the corresponding model over
Q̄p.

We also have a similar theorem for the compactification

Theorem IV.4.2. With assumptions as in the theorem above, we have an isomorphism
of Banach admissible K-representations

H1(X,E)m ' H1(Y,E)m
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In particular,
H1(X,E)[p] ' ρ⊗E B(ρp)⊗E πΣ0(ρ)KΣ0

Proof. We have assumed that ρ̄p is absolutely irreducible and hence ρ̄ is absolutely irre-
ducible which implies that m is a non-Eisenstein ideal. Now the theorem follows as in the
proof of Proposition 7.7.13 of [Eme06b].

We now come back to the exact sequence which we have obtained earlier

...→ H0(Xss,O/$sO)→ H1
Xord(X,O/$sO)→ H1(X,O/$sO)→ H1(Xss,O/$sO)→ ...

By Theorem 2.1.5 of [Eme06c], we get thatH1(X,O/$sO) is a smooth admissibleO/$sO-
representation of GL2(Qp). Moreover, alsoH0(Xss,O/$sO) is a smooth admissibleO/$sO-
representation of GL2(Qp) as Xss(KpK

p) has only finite number of connected components
for each Kp and Kp. The category of smooth admissible O/$sO-representations is a Serre
subcategory of the category of smooth (not necessarily admissible)O/$sO-representations
(see Proposition 2.4.11 of [Eme10]). Hence, as H1

Xord
(X,O/$sO) is smooth, we infer that

it is also smooth admissible. By Proposition 2.4 we get that H1
Xord

(X,O/$sO) is induced
from some representation W (O/$sO) of the Borel B(Qp). We deduce from Lemma 3.8
(Theorem 4.4.6 in [Eme10]) thatW (O/$sO) is smooth admissible O/$sO-representation
of B(Qp). Thus, we can apply to it Lemma 3.7. If π is any supersingular k-representation
of GL2(Qp), it implies that

H1
Xord(X,O/$sO)(π) = 0

because by Proposition 2.3 the representation H1
Xord

(X,O/$sO) is a smooth induction of
an admissible representation, hence no supersingular representation appears as a subquo-
tient of it.

Localising the exact sequence above at some supersingular k-representation π we get
an injection

H1(X,O/$sO)(π) ↪→ H1(Xss,O/$sO)

By passing to the limit with s we get an injection

H1(X,E)(π) ↪→ H1(Xss, E)

We can now prove our main theorem

Theorem IV.4.3. Let ρ : GQ = Gal(Q̄/Q) → GL2(E) be a pro-modular representa-
tion. Assume that ρ̄p = ρ̄|GQp

is absolutely irreducible. Then we have a GL2(Qp) × GQp-
equivariant injection

B(ρp)⊗E ρp ↪→ H1(MLT,∞, E)

Proof. Let π be the mod p representation of GL2(Qp) corresponding to ρ̄p by the mod p
local Langlands correspondence. It is a supersingular representation by our assumption
that ρ̄p is absolutely irreducible. Let p be the prime ideal of TΣ associated to ρ, where
Σ = Σ0 ∪{p} is some finite set which contains p and all the primes at which ρ is ramified.
As above we have

H1(X,E)(π) ↪→ H1(Xss, E)

and hence also
H1(X,E)(π)[p] ↪→ H1(Xss, E)[p]

Theorem 4.2 implies that (we keep track only of GQp-action instead of GQ)

B(ρp)⊗E ρp ⊗E πΣ0(ρ)KΣ0 ↪→ H1(Xss, E)[p]
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LetK ′Σ0
be a compact open subgroup of

∏
l∈Σ0 GL2(Ql) for which we have dim πΣ0(ρ)K

′
Σ0 =

1 where the dimension is over E. Such a subgroup always exists by classical results of
Casselman (see [Cas73]). Remark that we are using here the generic local Langlands
correspondence as explained in [EH11]: to generic representations we associate the same
representation as in the classical correspondence up to the twist by the determinant and
for non-generic ones we take Steinberg representations induced from a parabolic subgroup.
This allows us to still appeal to [Cas73] for the conclusion. Hence we have

B(ρp)⊗E ρp ↪→ H1(Xss, E)[p]K
′
Σ0

By Kunneth formula and Proposition 2.5 (the p-adic uniformisation of Rapoport-Zink) we
get that

H1(Xss, E) =
(
H1(MLT,∞, E)⊗̂ES

)D×(Qp)

where we have denoted by S the p-adic quaternionic forms of level Kp

Ĥ0(D×(Q)\D×(A)/Kp, E) =

lim←−
s

lim−→
Kp

H0(D×(Q)\D×(A)/KpK
p,O/$sO)

⊗O E
where Kp runs over compact open subgroups of D×(Qp). As GL2(Qp) and GQp act on
H1(Xss, E) through H1(MLT,∞, E) we conclude by the preceding discussion that

B(ρp)⊗E ρp ↪→ H1(MLT,∞, E)

as wanted.

IV.4.3 Cohomology with compact support

We show that the cohomology with compact support of the Lubin-Tate tower does not
contain any p-adic representations which reduce to mod p supersingular representations.
Recall we have morphisms

j : Xss ↪→ X

and
i : Xord → X

which give an exact sequence for any étale sheaf F on X

0→ j!j
∗F → F → i∗i

∗F → 0

This leads to an exact sequence of the cohomology

...→ H0(Xord,O/$sO)→ H1
c (Xss,O/$sO)→ H1(X,O/$sO)→ H1(Xord,O/$sO)→ ...

Because H1(X,O/$sO) is smooth admissible as a O/$sO-representation of GL2(Qp)
(by the result of Emerton) and H0(Xord,O/$sO) is smooth admissible as a O/$sO-
representation of GL2(Qp) because at each finite level Xord has a finite number of con-
nected components, we infer that also H1

c (Xss,O/$sO) is smooth admissible (as the
category of admissible O/$sO-representations is a Serre subcategory of smooth O/$sO-
representations). Passing to the limit with s, we infer thatH1

c (Xss, E) is Banach admissible
over E. This means that we can localise H1

c (Xss, E) at supersingular representations.
Let π be a supersingular k-representation of GL2(Qp), where k is the residue field of

K. Observe that if H1
c (Xss, E)(π) 6= 0, then also its reduction H1

c (Xss, k)(π) would be
non-zero. But Theorem 8.2 in Chapter III states that H1

c (Xss, k)(π) = 0. Hence we get
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Theorem IV.4.4. For any supersingular k-representation π of GL2(Qp) we have

H1
c (Xss, E)(π) = 0

In particular
H1
c (MLT,∞, E)(π) = 0

Proof. The first part follows from the preceding discussion, the second part follows from
the Rapoport-Zink uniformisation.

This theorem implies that for any continuous ρp : GQp → GL2(E) which has an abso-
lutely irreducible reduction ρ̄p : GQp → GL2(k), the GL2(Qp)-representation B(ρp) associ-
ated to ρp by the p-adic Local Langlands correspondence does not appear inH1

c (MLT,∞, E).
Nevertheless, we believe that it appears in H2

c (MLT,∞, E), though we could not prove it.

IV.4.4 Analytic cohomology

Let us explain, why we do not work with the de Rham cohomology as would the folklore
conjecture suggest (to be precise: we do, but we work only with the structure sheaf as
all the other differentials vanish as we show below). The reason for that is that there are
no good finiteness results for de Rham cohomology of adic spaces which are not of finite
type (as our Lubin-Tate perfectoidMLT,∞). Moreover, it seems that the (continuous) de
Rham cohomology does not suit well perfectoid spaces. Indeed, H i(X, Ω̂j

X) is zero for any
perfectoid space X and sheaves of continuous differentials Ω̂j

X , j > 0. We define here Ω̂j
X

locally on Spa(R,R+) over (K,K+) by firstly defining

Ω̂j
R+/K+ = lim←−

n

Ωj
(R+/pn)/(K+/pn)

and then Ω̂j
Spa(R,R+) = Ω̂j

R/K = Ω̂j
R+/K+ [1/p]. Thus, it is enough to prove the statement

for affinoid perfectoids X = Spa(R,R+). We can further reduce ourselves to the case
i = 0 by using the Cech complex associated to some rational covering of X (which will be
a covering by affinoid perfectoids by Corollary 6.8 of [Sch12a]). Hence, we have to show
that global sections of Ω̂j

X are zero. It suffices to show that Ω̂j
R+/K+ is almost zero. This

follows from induction, as for n = 1 the sheaf Ωj
(R+/p)/(K+/p) is identically zero, and for

n > 1 we conclude using an exact sequence, as in the proof of Theorem 5.10 of [Sch12a]:

0→ R+/p→ R+/pn → R+/pn−1 → 0

Let us remark that this reasoning also implies that sheaves Ω̂j
X are zero on a perfectoid

space X for j > 0. It is enough to check it at stalks where we have Ω̂j
X,x = lim−→x∈U Ω̂j

X(U)
and U runs over rational affinoid subsets of X containing x. As such subsets are perfectoid
(Corollary 6.8 of [Sch12a]) we have Ω̂j

X(U) = 0 and hence the result.

AsMLT,∞ is a perfectoid space by [SW12], the above reasoning applies, showing that
de Rham cohomology of MLT,∞ reduces to the study of the cohomology with values in
the structure sheaf. This is exactly the analytic cohomology we consider. By using recent
results of Scholze, it seems natural to work with the analytic cohomology (i.e. topology
defined by open subsets). We review this below. We believe that the ’folklore conjecture’
should be understood as the statement that the p-adic local Langlands correspondence
appears in the analytic cohomology of the appropiate Rapoport-Zink space at infinity.
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We also remark that the same applies to Shimura varieties at the infinite level, which are
perfectoid spaces by [Sch13].

If Z is any adic space, we denote by Zan its analytic topos which arises from the
topology of open subsets. For any (coherent) sheaf F on Z, we write H i

an(Z,F) for the
i-th cohomology group of Zan with values in F .

By Theorem IV.2.1 of [Sch13] (where we pass to the limit with Z/pnZ and then use
the reasoning from the proof of Theorem 3.20 in [Sch12b] to descent from the pro-étale
site to the étale site) we have an isomorphism

H1(X,E)⊗̂EC ' H1
an(X,OX)

which is GL2(Qp)-equivariant and also equivariant with respect to the Hecke action of TΣ.

If we were to use the same reasoning as for the p-adic completed cohomology (i.e.
some exact sequence of analytic cohomology and localisation at a supersingular represen-
tation) to show that the p-adic local Langlands correspondence appears in the analytic
cohomology of the Lubin-Tate tower at infinity, then we would have to start by proving ad-
missibility of the cohomology groups. Unfortunately, this is not true. By the comparison
theorem of Scholze we get that H1

an(X,OX) is a Banach admissible E-represention, but
H0
an(Xss,OXss) is not admissible (and it is not even clear whether it is a Banach space).

In order to prove that, it is enough to prove it for H0
an(MLT,∞,OMLT,∞) by the p-adic

uniformisation of Rapoport-Zink.

Proposition IV.4.5. The GL2(Qp)-representation H0
an(MLT,∞,OMLT,∞) is not admis-

sible.

Proof. In Section 2 (see especially 2.10) in [Wei13], Weinstein gives an explicit description
of the geometrically connected components of MLT,∞. Each of them is isomorphic to
Spa(A ⊗OK∞ C,A ⊗OK∞ OC), where K∞ is the Lubin-Tate extension of Qp (see Section
2.3 of [Wei13]; we fix an embedding K∞ ↪→ C) and A is a perfectoid K∞-algebra with a
tilt (Corollary 2.9.11 of [Wei13])

A[ ' F̄p[[X1/p∞
1 , X

1/p∞
2 ]]

Hence, in H0
an(MLT,∞,OMLT,∞) appears A⊗OK∞ C (and in fact much more as this is the

set of all unbouded funtions on the Lubin-Tate perfectoid). We have an action of GL2(Zp)
on A. Let K be any compact open subgroup of GL2(Zp). If H0

an(MLT,∞,OMLT,∞) were
admissible, then in particular for the lattice A ⊗OK∞ OC in A ⊗OK∞ C, the reduction of
K-invariants (A⊗OK∞ F̄p)K would be of finite dimension over F̄p (by the very definition,
see Definition 2.7.1 of [Eme10]). This is not possible. Indeed, observe that AK contains
(and probably equals to but we do not need it) the ring of integral analytic functions
on the Lubin-Tate space of K-level, which is a finite ring over the ring OC [[X1, X2]] of
power-series over OC .

This means that we cannot use the localisation functor and deduce our result from
the global results of Emerton. Hence, for now, we can only state a conjecture, which we
believe to be a correct version of the folklore conjecture.

Conjecture IV.4.6. Let ρp : GQp → GL2(E) be a continuous de Rham Galois represen-
tation. Then, there is a non-zero GL2(Qp)-equivariant injection

B(ρp) ↪→ H1
an(MLT,∞,OMLT,∞)
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Observe that in fact we can state a similar conjecture forH0
an(MLT,∞,OMLT,∞) instead

of H1
an. A priori, it is not clear which one should be true or whether both are. The

advantage of working with H0
an should be the fact that it is quite explicit by the work of

Weinstein.

Christophe Breuil has informed us that a similar conjecture was made by him and
Matthias Strauch in 2006 (unpublished note). The difference was that on the left side
they considered the locally analytic vectors of B(ρp) while on the right side they had a
cohomology of the Drinfeld tower at some finite level. Results toward this conjecture for
special series appear in [Bre04].

We believe that there is also a more refined version of the folklore conjecture which
truly realizes the p-adic local Langlands correspondence in the sense that in the analytic
cohomology of the Lubin-Tate perfectoid should appear a tensor product of B(ρp) with the
associated (φ,Γ)-module of ρp. We do not make precise here what kind of (φ,Γ)-modules
we consider and how the appropiate Robba ring acts on the Lubin-Tate perfectoid. We
shall come back to those issues elsewhere.

IV.4.5 Final remarks

Observe that our proof of Theorem 4.3 depends on the global data as we have to start
with a global pro-modular Galois representation ρ. As our result is completely local,
it is natural to ask whether the same thing holds for any absolutely irreducible Galois
representation ρp of GQp which is not necessarily a restriction of some global ρ (as in
Conjecture 4.6).

Another natural problem is to try to prove Theorem 4.3 without assuming that ρ̄p is
absolutely irreducible. This would require a more careful study of the cohomology of the
ordinary locus.

The most pertaining problem is whether one can reconstruct B(ρp) from either the
p-adic completed or the analytic cohomology of the Lubin-Tate tower and hence give a
different proof of the p-adic local Langlands correspondence. This might be useful in
trying to prove the existence of the p-adic correspondence for groups other than GL2(Qp)
as well as Theorem 4.3 for Galois representations ρp not necessarily coming from global
Galois representations.
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